首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With population explosion and globalization, the spread of infectious diseases has been a major concern. In 2019, a newly identified type of Coronavirus caused an outbreak of respiratory illness, popularly known as COVID-19, and became a pandemic. Although enormous efforts have been made to understand the spread of COVID-19, our knowledge of the COVID-19 dynamics still remains limited. The present study employs the concepts of chaos theory to examine the temporal dynamic complexity of COVID-19 around the world. The false nearest neighbor (FNN) method is applied to determine the dimensionality and, hence, the complexity of the COVID-19 dynamics. The methodology involves: (1) reconstruction of a single-variable COVID-19 time series in a multi-dimensional phase space to represent the underlying dynamics; and (2) identification of “false” neighbors in the reconstructed phase space and estimation of the dimension of the COVID-19 series. For implementation, COVID-19 data from 40 countries/regions around the world are studied. Two types of COVID-19 data are analyzed: (1) daily COVID-19 cases; and (2) daily COVID-19 deaths. The results for the 40 countries/regions indicate that: (1) the dynamics of COVID-19 cases exhibit low- to medium-level complexity, with dimensionality in the range 3 to 7; and (2) the dynamics of COVID-19 deaths exhibit complexity anywhere from low to high, with dimensionality ranging from 3 to 13. The results also suggest that the complexity of the dynamics of COVID-19 deaths is greater than or at least equal to that of the dynamics of COVID-19 cases for most (three-fourths) of the countries/regions. These results have important implications for modeling and predicting the spread of COVID-19 (and other infectious diseases), especially in the identification of the appropriate complexity of models.  相似文献   

2.
Ru-Qi Li 《中国物理 B》2021,30(12):120202-120202
Since December 2019, the COVID-19 epidemic has repeatedly hit countries around the world due to various factors such as trade, national policies and the natural environment. To closely monitor the emergence of new COVID-19 clusters and ensure high prediction accuracy, we develop a new prediction framework for studying the spread of epidemic on networks based on partial differential equations (PDEs), which captures epidemic diffusion along the edges of a network driven by population flow data. In this paper, we focus on the effect of the population movement on the spread of COVID-19 in several cities from different geographic regions in China for describing the transmission characteristics of COVID-19. Experiment results show that the PDE model obtains relatively good prediction results compared with several typical mathematical models. Furthermore, we study the effectiveness of intervention measures, such as traffic lockdowns and social distancing, which provides a new approach for quantifying the effectiveness of the government policies toward controlling COVID-19 via the adaptive parameters of the model. To our knowledge, this work is the first attempt to apply the PDE model on networks with Baidu Migration Data for COVID-19 prediction.  相似文献   

3.
The outbreak of coronavirus disease 2019 (COVID-19) with the origin of the spread assumed to be located in Wuhan, China, began in December 2019, and is continuing until now. With the COVID-19 pandemic showing a progressive spread throughout the countries of the world, there is emerging interest for the potential long-term consequences of suffering from a COVID-19 pneumonia. Imaging plays a central role in the diagnosis and management of COVID-19 pneumonia, with chest X-ray examinations and computed tomography (CT) being undoubtedly the modalities most widely used, allowing for a fast and sensitive detection of infiltration patterns associated with COVID-19 pneumonia. For a better understanding of underlying pathomechanisms of pulmonary damage, longitudinal imaging series are warranted, for which CT is of limited usability due to repeated exposure of X-rays. Recent advances in MRI suggested that high-performance low-field MRI might represent a valuable method for pulmonary imaging without the need of radiation exposure. However, so far, low-field MRI has not been applied to study pulmonary damage after COVID-19 pneumonia. We present a case report of a patient who suffered from COVID-19 pneumonia using 0.55 T MRI for follow-up examinations three months after initial infection. Low-field MRI enables a precise visualization of persistent pulmonary changes including ground-glass opacities, which are consistent with CT performed on the same day. Low-field MRI seems to be feasible in the detection of pulmonary involvement in patients with COVID-19 pneumonia and may have the potential for repetitive lung examinations in monitoring the reconvalescence after pulmonary infections.  相似文献   

4.
新型冠状病毒肺炎的流行病学参数与模型   总被引:4,自引:0,他引:4       下载免费PDF全文
一种新型冠状病毒感染导致的肺炎自2019年12月至今在我国以及200多个国家和地区传播.本文旨在介绍近期关于新型冠状病毒肺炎的几个重要流行病学参数的研究进展和估计方法,包括基本再生数、潜伏期和代间隔,同时还介绍两个动力学模型及其结果.这些参数刻画了新型冠状病毒肺炎的传播特点,影响控制策略的制定和有效性.简要来说,新型冠状病毒肺炎的基本再生数R0的中位数为2.6,潜伏期均值约为5.0 d,代间隔均值约为5.5 d.这表明新型冠状病毒肺炎传播速度快.诸如对确诊病人的隔离治疗、对疑似病例的隔离、对密切接触者的追踪、对疾病信息的宣传和采取自我防护等防控措施能有效降低疾病暴发的风险和规模.  相似文献   

5.
The global economy is under great shock again in 2020 due to the COVID-19 pandemic; it has not been long since the global financial crisis in 2008. Therefore, we investigate the evolution of the complexity of the cryptocurrency market and analyze the characteristics from the past bull market in 2017 to the present the COVID-19 pandemic. To confirm the evolutionary complexity of the cryptocurrency market, three general complexity analyses based on nonlinear measures were used: approximate entropy (ApEn), sample entropy (SampEn), and Lempel-Ziv complexity (LZ). We analyzed the market complexity/unpredictability for 43 cryptocurrency prices that have been trading until recently. In addition, three non-parametric tests suitable for non-normal distribution comparison were used to cross-check quantitatively. Finally, using the sliding time window analysis, we observed the change in the complexity of the cryptocurrency market according to events such as the COVID-19 pandemic and vaccination. This study is the first to confirm the complexity/unpredictability of the cryptocurrency market from the bull market to the COVID-19 pandemic outbreak. We find that ApEn, SampEn, and LZ complexity metrics of all markets could not generalize the COVID-19 effect of the complexity due to different patterns. However, market unpredictability is increasing by the ongoing health crisis.  相似文献   

6.
Since the coronavirus disease 2019 (COVID-19) pandemic, most professional sports events have been held without spectators. It is generally believed that home teams deprived of enthusiastic support from their home fans experience reduced benefits of playing on their home fields, thus becoming less likely to win. This study attempts to confirm if this belief is true in four major European football leagues through statistical analysis. This study proposes a Bayesian hierarchical Poisson model to estimate parameters reflecting the home advantage and the change in such advantage. These parameters are used to improve the performance of machine-learning-based prediction models for football matches played after the COVID-19 break. The study describes the statistical analysis on the impact of the COVID-19 pandemic on football match results in terms of the expected score and goal difference. It also shows that estimated parameters from the proposed model reflect the changed home advantage. Finally, the study verifies that these parameters, when included as additional features, enhance the performance of various football match prediction models. The home advantage in European football matches has changed because of the behind-closed-doors policy implemented due to the COVID-19 pandemic. Using parameters reflecting the pandemic’s impact, it is possible to predict more precise results of spectator-free matches after the COVID-19 break.  相似文献   

7.
Currently, the world is still facing a COVID-19 (coronavirus disease 2019) classified as a highly infectious disease due to its rapid spreading. The shortage of X-ray machines may lead to critical situations and delay the diagnosis results, increasing the number of deaths. Therefore, the exploitation of deep learning (DL) and optimization algorithms can be advantageous in early diagnosis and COVID-19 detection. In this paper, we propose a framework for COVID-19 images classification using hybridization of DL and swarm-based algorithms. The MobileNetV3 is used as a backbone feature extraction to learn and extract relevant image representations as a DL model. As a swarm-based algorithm, the Aquila Optimizer (Aqu) is used as a feature selector to reduce the dimensionality of the image representations and improve the classification accuracy using only the most essential selected features. To validate the proposed framework, two datasets with X-ray and CT COVID-19 images are used. The obtained results from the experiments show a good performance of the proposed framework in terms of classification accuracy and dimensionality reduction during the feature extraction and selection phases. The Aqu feature selection algorithm achieves accuracy better than other methods in terms of performance metrics.  相似文献   

8.
The computed tomography (CT) chest is a tool for diagnostic tests and the early evaluation of lung infections, pulmonary interstitial damage, and complications caused by common pneumonia and COVID-19. Additionally, computer-aided diagnostic systems and methods based on entropy, fractality, and deep learning have been implemented to analyse lung CT images. This article aims to introduce an Entropy-based Measure of Complexity (EMC). In addition, derived from EMC, a Lung Damage Measure (LDM) is introduced to show a medical application. CT scans of 486 healthy subjects, 263 diagnosed with COVID-19, and 329 with pneumonia were analysed using the LDM. The statistical analysis shows a significant difference in LDM between healthy subjects and those suffering from COVID-19 and common pneumonia. The LDM of common pneumonia was the highest, followed by COVID-19 and healthy subjects. Furthermore, LDM increased as much as clinical classification and CO-RADS scores. Thus, LDM is a measure that could be used to determine or confirm the scored severity. On the other hand, the d-summable information model best fits the information obtained by the covering of the CT; thus, it can be the cornerstone for formulating a fractional LDM.  相似文献   

9.
The COVID-19 pandemic caused important health and societal damage across the world in 2020–2022. Its study represents a tremendous challenge for the scientific community. The correct evaluation and analysis of the situation can lead to the elaboration of the most efficient strategies and policies to control and mitigate its propagation. The paper proposes a Multi-Criteria Decision Support (MCDS) based on the combination of three methods: the Group Analytic Hierarchy Process (GAHP), which is a subjective group weighting method; Extended Entropy Weighting Method (EEWM), which is an objective weighting method; and the COmplex PRoportional ASsessment (COPRAS), which is a multi-criteria method. The COPRAS uses the combined weights calculated by the GAHP and EEWM. The sum normalization (SN) is considered for COPRAS and EEWM. An extended entropy is proposed in EEWM. The MCDS is implemented for the development of a complex COVID-19 indicator called COVIND, which includes several countries’ COVID-19 indicators, over a fourth COVID-19 wave, for a group of European countries. Based on these indicators, a ranking of the countries is obtained. An analysis of the obtained rankings is realized by the variation of two parameters: a parameter that describes the combination of weights obtained with EEWM and GAHP and the parameter of extended entropy function. A correlation analysis between the new indicator and the general country indicators is performed. The MCDS provides policy makers with a decision support able to synthesize the available information on the fourth wave of the COVID-19 pandemic.  相似文献   

10.
As the COVID-19 outbreak has an impact on the global economy, there will be interest in how China’s financial markets function during the outbreak. To investigate the path of risk contagion in China’s financial sub-markets before and after the COVID-19 outbreak, we divided the 2016–2021 period into two phases. Based on the time of the COVID-19 outbreak, we divided the new stage of economic development into pre-epidemic and post-epidemic stages and employed the DCC-GARCH model to investigate the dynamic correlation coefficients among the financial sub-markets in China. Furthermore, we employed complex network theory and the minimum tree model to describe the risk contagion path between two-stage Chinese financial submarkets. Finally, we provided pertinent recommendations for investors and policymakers and conducted a brief discussion based on the findings of the research.  相似文献   

11.
The economy is a system of complex interactions. The COVID-19 pandemic strongly influenced economies, particularly through introduced restrictions, which formed a completely new economic environment. The present work focuses on the changes induced by the COVID-19 epidemic on the correlation network structure. The analysis is performed on a representative set of USA companies—the S&P500 components. Four different network structures are constructed (strong, weak, typically, and significantly connected networks), and the rank entropy, cycle entropy, averaged clustering coefficient, and transitivity evolution are established and discussed. Based on the mentioned structural parameters, four different stages have been distinguished during the COVID-19-induced crisis. The proposed network properties and their applicability to a crisis-distinguishing problem are discussed. Moreover, the optimal time window problem is analysed.  相似文献   

12.
Le He  Linhe Zhu 《理论物理通讯》2021,73(3):35002-22
The coronavirus disease 2019(COVID-19)has been widely spread around the world,and the control and behavior dynamics are still one of the important research directions in the world.Based on the characteristics of COVID-19’s spread,a coupled disease-awareness model on multiplex networks is proposed in this paper to study and simulate the interaction between the spreading behavior of COVID-19 and related information.In the layer of epidemic spreading,the nodes can be divided into five categories,where the topology of the network represents the physical contact relationship of the population.The topological structure of the upper network shows the information interaction among the nodes,which can be divided into aware and unaware states.Awareness will make people play a positive role in preventing the epidemic diffusion,influencing the spread of the disease.Based on the above model,we have established the state transition equation,through the microscopic Markov chain approach(MMCA),and proposed the propagation threshold calculation method under the epidemic model.Furthermore,MMCA iteration and the Monte Carlo method are simulated on the static network and dynamic network,respectively.The current results will be beneficial to the study of COVID-19,and propose a more rational and effective model for future research on epidemics.  相似文献   

13.
We analyze how the COVID-19 pandemic affected the trade of products between countries. With this aim, using the United Nations Comtrade database, we perform a Google matrix analysis of the multiproduct World Trade Network (WTN) for the years 2018–2020, comprising the emergence of the COVID-19 as a global pandemic. The applied algorithms—PageRank, CheiRank and the reduced Google matrix—take into account the multiplicity of the WTN links, providing new insights into international trade compared to the usual import–export analysis. These complex networks analysis algorithms establish new rankings and trade balances of countries and products considering all countries on equal grounds, independent of their wealth, and every product on the basis of its relative exchanged volumes. In comparison with the pre-COVID-19 period, significant changes in these metrics occurred for the year 2020, highlighting a major rewiring of the international trade flows induced by the COVID-19 pandemic crisis. We define a new PageRank–CheiRank product trade balance, either export or import-oriented, which is significantly perturbed by the pandemic.  相似文献   

14.
Perimyocarditis is a well-known acute inflammation of the pericardium and the underlying myocardium. Most commonly perimyocarditis is of viral aetiology, specifically the coxsackie B virus. However, nowadays SARS-CoV-2 associated with COVID-19 infections has emerged as a potential rare cause of perimyocarditis. This case report will demonstrate a case of a young female with perimyocarditis as diagnosed by magnetic resonance imaging (MRI) accompanied by antigens indicating a past COVID-19 infection. Clinical status as well as Findings at MRI, echocardiography and lab results will be reviewed.  相似文献   

15.
The novel coronavirus disease 2019 (COVID-19) pandemic is an unprecedented global event that has been challenging governments, health systems, and communities worldwide. Available data from the first months indicated varying patterns of the spread of COVID-19 within American cities, when the spread was faster in high-density and walkable cities such as New York than in low-density and car-oriented cities such as Los Angeles. Subsequent containment efforts, underlying population characteristics, variants, and other factors likely affected the spread significantly. However, this work investigates the hypothesis that urban configuration and associated spatial use patterns directly impact how the disease spreads and infects a population. It follows work that has shown how the spatial configuration of urban spaces impacts the social behavior of people moving through those spaces. It addresses the first 60 days of contagion (before containment measures were widely adopted and had time to affect spread) in 93 urban counties in the United States, considering population size, population density, walkability, here evaluated through walkscore, an indicator that measures the density of amenities, and, therefore, opportunities for population mixing, and the number of confirmed cases and deaths. Our findings indicate correlations between walkability, population density, and COVID-19 spreading patterns but no clear correlation between population size and the number of cases or deaths per 100 k habitants. Although virus spread beyond these initial cases may provide additional data for analysis, this study is an initial step in understanding the relationship between COVID-19 and urban configuration.  相似文献   

16.
The main research question concerned the identification of changes in the COVID-19 epidemiological situation using fuzzy clustering methods. This research used cross-sectional time series data obtained from the European Centre for Disease Prevention and Control. The identification of country types in terms of epidemiological risk was carried out using the fuzzy c-means clustering method. We also used the entropy index to measure the degree of fuzziness in the classification and evaluate the uncertainty of epidemiological states. The proposed approach allowed us to identify countries’ epidemic states. Moreover, it also made it possible to determine the time of transition from one state to another, as well as to observe fluctuations during changes of state. Three COVID-19 epidemic states were identified in Europe, i.e., stabilisation, destabilisation, and expansion. The methodology is universal and can also be useful for other countries, as well as the research results being important for governments, politicians and other policy-makers working to mitigate the effects of the COVID-19 pandemic.  相似文献   

17.
Background: Early mobilization and rehabilitation interventions should be provided to patients who survived severe COVID-19 to improve their physical function and activities of daily living (ADL). However, their physical and mental status at discharge has not been well described in Japan. We report the intervention provided for a survivor of severe COVID-19 and his physical and mental status at discharge from an acute care hospital. Case Report: A 62-year-old man was admitted to our emergency department with a diagnosis of COVID-19 with severe acute respiratory dysfunction. He had complicated intensive care unit-acquired weakness (ICU-AW) and delirium during mechanical ventilation therapy. Rehabilitation intervention was initiated on the seventh day post-admission and was gradually performed according to his respiratory and hemodynamic status. As a result of the rehabilitation intervention, ICU-AW and cognitive function gradually improved. On hospital day 37, he independently performed basic ADL and was discharged. However, he lost approximately 9% of his body weight at discharge. In addition, his hand grip strength and six-minute walking distance were lower and shorter than the reference values, respectively. His mental component summary of the Short Form-8™ was lower than the national standard deviation for the Japanese population. Conclusion: Although survivors of severe COVID-19 who undergo early rehabilitation can be discharged from an acute care hospital, they may have several impairments in their physical and mental status, including muscle function, diffusion capacity, exercise tolerance, and health-related quality of life.  相似文献   

18.
The spread of the coronavirus disease 2019(COVID-19) caused by severe acute respiratory syndrome coronavirus-2(SARS-CoV-2) has become a global health crisis.The binding affinity of SARS-CoV-2(in particular the receptor binding domain,RBD) to its receptor angiotensin converting enzyme 2(ACE2) and the antibodies is of great importance in understanding the infectivity of COVID-19 and evaluating the candidate therapeutic for COVID-19.We propose a new method based on molecular mechanics/Poisson-Boltzmann surface area(MM/PBSA) to accurately calculate the free energy of SARS-CoV-2 RBD binding to ACE2 and antibodies.The calculated binding free energy of SARS-CoV-2 RBD to ACE2 is-13.3 kcal/mol,and that of SARS-CoV RBD to ACE2 is-11.4 kcal/mol,which agree well with the experimental results of-11.3 kcal/mol and-10.1 kcal/mol,respectively.Moreover,we take two recently reported antibodies as examples,and calculate the free energy of antibodies binding to SARS-CoV-2 RBD,which is also consistent with the experimental findings.Further,within the framework of the modified MM/PBSA,we determine the key residues and the main driving forces for the SARS-CoV-2 RBD/CB6 interaction by the computational alanine scanning method.The present study offers a computationally efficient and numerically reliable method to evaluate the free energy of SARS-CoV-2 binding to other proteins,which may stimulate the development of the therapeutics against the COVID-19 disease in real applications.  相似文献   

19.
耦合不同年龄层接触模式的新冠肺炎传播模型   总被引:1,自引:0,他引:1       下载免费PDF全文
搜集广东省自1月23日到2月16日期间944例新冠肺炎样本信息.对确诊人群进行年龄特征分析,将人群分为儿童组(0—5岁)、青少年组(6—19岁)、中青年组(20—64岁)、老年组(65岁及以上),耦合不同年龄层的接触模式,建立离散年龄结构新冠肺炎模型,得出模型的基本再生数及最终规模.通过蒙特卡罗数值算法(MCMC)辨识模型的参数、拟合累计病例数、计算消亡时间、感染峰值及到达时间等有关生物量.研究发现中青年人群感染人数最多;相比于居家模式,社区模式下中青年人群感染峰值上升41%,峰值推迟一周到达.通过分析不同年龄层的最终规模在对应年龄层的占比,发现老年人的易感性较高,青少年的易感性相对较低.在居家模式下,若各年龄层患者能及时就诊,住院峰值将进一步减少,但住院高峰将提前一周到达.此模型可揭示个体接触行为对新冠肺炎的传播的影响,定量评价居家隔离措施的有效性.  相似文献   

20.
The need to provide accurate predictions in the evolution of the COVID-19 epidemic has motivated the development of different epidemiological models. These models require a careful calibration of their parameters to capture the dynamics of the phenomena and the uncertainty in the data. This work analyzes different parameters related to the personal evolution of COVID-19 (i.e., time of recovery, length of stay in hospital and delay in hospitalization). A Bayesian Survival Analysis is performed considering the age factor and period of the epidemic as fixed predictors to understand how these features influence the evolution of the epidemic. These results can be easily included in the epidemiological SIR model to make prediction results more stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号