首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu Y  Jing H  Dong Z  Zhao Q  Wu H  Li F 《Inorganic chemistry》2011,50(16):7412-7420
In this work, a neutral iridium(III) complex [Ir(bt)(2)(acac)] (Hbt = 2-phenylbenzothiazole; Hacac = acetylacetone) has been realized as a Hg(II)-selective sensor through UV-vis absorption, phosphorescence emission, and electrochemical measurements and was further developed as a phosphorescent agent for monitoring intracellular Hg(II). Upon addition of Hg(II) to a solution of [Ir(bt)(2)(acac)], a noticeable spectral blue shift in both absorption and phosphorescent emission bands was measured. (1)H NMR spectroscopic titration experiments indicated that coordination of Hg(II) to the complex induces fast decomposition of [Ir(bt)(2)(acac)] to form a new complex, which is responsible for the significant variations in optical and electrochemical signals. Importantly, cell imaging experiments have shown that [Ir(bt)(2)(acac)] is membrane permeable and can be used to monitor the changes in Hg(II) levels within cells in a ratiometric phosphorescence mode.  相似文献   

2.
A neutral phosphorescent coordination compound bearing a benzimidazole ligand, Ir(pbi)(2)(acac) (Hpbi = 1,2-diphenyl-1H-benzo[d]imidazole; Hacac = acetylacetone), is demonstrated to be the first example of a sulfur-free iridium complex for the detection of Hg(2+) cations with high selectivity and sensitivity. Ir(pbi)(2)(acac) shows a multisignaling response towards mercury(II) ions through UV-vis absorption, phosphorescence and electrochemistry measurements. Upon addition of Hg(2+) ions, solutions of this complex change from yellow to colorless, which could be observed easily by the naked eye, while its phosphorescence turns from bright green (λ(PLmax) = 520 nm) into faint skyblue (λ(PLmax) = 476 nm), and the detection limit is calculated to be 2.4 × 10(-7) mol L(-1). (1)H NMR spectroscopic titration as well as ESI-MS results indicate that the decomposition of Ir(pbi)(2)(acac) in the presence of Hg(2+) through rupture of Ir-O bonds is responsible for the significant variations in both optical and electrochemical signals.  相似文献   

3.
The synthesis and photophysical study of a family of cyclometalated iridium(III) complexes are reported. The iridium complexes have two cyclometalated (C(**)N) ligands and a single monoanionic, bidentate ancillary ligand (LX), i.e., C(**)N2Ir(LX). The C(**)N ligands can be any of a wide variety of organometallic ligands. The LX ligands used for this study were all beta-diketonates, with the major emphasis placed on acetylacetonate (acac) complexes. The majority of the C(**)N2Ir(acac) complexes phosphoresce with high quantum efficiencies (solution quantum yields, 0.1-0.6), and microsecond lifetimes (e.g., 1-14 micros). The strongly allowed phosphorescence in these complexes is the result of significant spin-orbit coupling of the Ir center. The lowest energy (emissive) excited state in these C(**)N2Ir(acac) complexes is a mixture of (3)MLCT and (3)(pi-pi) states. By choosing the appropriate C(**)N ligand, C(**)N2Ir(acac) complexes can be prepared which emit in any color from green to red. Simple, systematic changes in the C(**)N ligands, which lead to bathochromic shifts of the free ligands, lead to similar bathochromic shifts in the Ir complexes of the same ligands, consistent with "C(**)N2Ir"-centered emission. Three of the C(**)N2Ir(acac) complexes were used as dopants for organic light emitting diodes (OLEDs). The three Ir complexes, i.e., bis(2-phenylpyridinato-N,C2')iridium(acetylacetonate) [ppy2Ir(acac)], bis(2-phenyl benzothiozolato-N,C2')iridium(acetylacetonate) [bt2Ir(acac)], and bis(2-(2'-benzothienyl)pyridinato-N,C3')iridium(acetylacetonate) [btp2Ir(acac)], were doped into the emissive region of multilayer, vapor-deposited OLEDs. The ppy2Ir(acac)-, bt2Ir(acac)-, and btp2Ir(acac)-based OLEDs give green, yellow, and red electroluminescence, respectively, with very similar current-voltage characteristics. The OLEDs give high external quantum efficiencies, ranging from 6 to 12.3%, with the ppy2Ir(acac) giving the highest efficiency (12.3%, 38 lm/W, >50 Cd/A). The btp2Ir(acac)-based device gives saturated red emission with a quantum efficiency of 6.5% and a luminance efficiency of 2.2 lm/W. These C(**)N2Ir(acac)-doped OLEDs show some of the highest efficiencies reported for organic light emitting diodes. The high efficiencies result from efficient trapping and radiative relaxation of the singlet and triplet excitons formed in the electroluminescent process.  相似文献   

4.
A multisignaling chemosensor for Hg(2+) based on the iridium(III) complex Ir(thq)(2)(acac) was realized through UV-Vis absorption, phosphorescent emission and electrochemical measurements. Upon addition of Hg(2+), an obvious blue-shift in absorption spectra and a strong decrease of emission intensity were measured for Ir(thq)(2)(acac), which could be observed by the naked eye. Hg(2+) is coordinated to Ir(thq)(2)(acac), forming a 1 : 1 complex. Because Hg(2+) is a thiophilic metal ion, the interaction between Hg(2+) and the sulfur atom of cyclometalated ligands is responsible for the significant variations in optical and electrochemical signals.  相似文献   

5.
Solution-processible conjugated electrophosphorescent polymers   总被引:4,自引:0,他引:4  
We report the synthesis and photophysical study of a series of solution-processible phosphorescent iridium complexes. These comprise bis-cyclometalated iridium units [Ir(ppy)(2)(acac)] or [Ir(btp)(2)(acac)] where ppy is 2-phenylpyridinato, btp is 2-(2'-benzo[b]thienyl)pyridinato, and acac is acetylacetonate. The iridium units are covalently attached to and in conjugation with oligo(9,9-dioctylfluorenyl-2,7-diyl) [(FO)(n)] to form complexes [Ir(ppy-(FO)(n))(2)(acac)] or [Ir(btp-(FO)(n))(2)(acac)], where the number of fluorene units, n, is 1, 2, 3, approximately 10, approximately 20, approximately 30, or approximately 40. All the complexes exhibit emission from a mixed triplet state in both photoluminescence and electroluminescence, with efficient quenching of the fluorene singlet emission. Short-chain complexes, 11-13, [Ir(ppy-(FO)(n)-FH)(2)(acac)] where n = 0, 1, or 2, show green light emission, red-shifted through the FO attachment by about 70 meV, but for longer chains there is quenching because of the lower energy triplet state associated with polyfluorene. In contrast, polymer complexes 18-21 [Ir(btp-(FO)(n))(2)(acac)] where n is 5-40 have better triplet energy level matching and can be used to provide efficient red phosphorescent polymer light-emitting diodes, with a red shift due to the fluorene attachment of about 50 meV. We contrast this small (50-70 meV) and short-range modification of the triplet energies through extended conjugation, with the much more substantial evolution of the pi-pi* singlet transitions, which saturate at about n = 10. These covalently bound materials show improvements in efficiency over simple blends and will form the basis of future investigations into energy-transfer processes occurring in light-emitting diodes.  相似文献   

6.
Two newly prepared oligothienylpyridines, 5-(2-pyridyl)-5'-dodecyl-2,2'-bithiophene, HL(2), and 5-(2-pyridyl)-5'-dodecyl-2,2':5',2'-ter-thiophene, HL(3), bind to platinum(II) and iridium(III) as N∧C-coordinating ligands, cyclometallating at position C(4) in the thiophene ring adjacent to the pyridine, leaving a chain of either one or two pendent thiophenes. The synthesis of complexes of the form [PtL(n)(acac)] and [Ir(L(n))(2)(acac)] (n = 2 or 3) is described. The absorption and luminescence properties of these four new complexes are compared with the behavior of the known complexes [PtL(1)(acac)] and [Ir(L(1))(2)(acac)] {HL(1) = 2-(2-thienyl)pyridine}, and the profound differences in behavior are interpreted with the aid of time-dependent density functional theory (TD-DFT) calculations. Whereas [PtL(1)(acac)] displays solely intense phosphorescence from a triplet state of mixed ππ*/MLCT character, the phosphorescence of [PtL(2)(acac)] and [PtL(3)(acac)] is weak, strongly red shifted, and accompanied by higher-energy fluorescence. TD-DFT reveals that this difference is probably due to the metal character in the lowest-energy excited states being strongly attenuated upon introduction of the additional thienyl rings, such that the spin-orbit coupling effect of the metal in promoting intersystem crossing is reduced. A similar pattern of behavior is observed for the iridium complexes, except that the changeover to dual emission is delayed to the terthiophene complex [Ir(L(3))(2)(acac)], reflecting the higher degree of metal character in the frontier orbitals of the iridium complexes than their platinum counterparts.  相似文献   

7.
Investigations of blue phosphorescent organic light emitting diodes (OLEDs) based on [Ir(2-(2,4-difluorophenyl)pyridine)(2)(picolinate)] (FIrPic) have pointed to the cleavage of the picolinate as a possible reason for device instability. We reproduced the loss of picolinate and acetylacetonate ancillary ligands in solution by the addition of Br?nsted or Lewis acids. When hydrochloric acid is added to a solution of a [Ir(C^N)(2)(X^O)] complex (C^N = 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (diFppy) and X^O = picolinate (pic) or acetylacetonate (acac)), the cleavage of the ancillary ligand results in the direct formation of the chloro-bridged iridium(III) dimer [{Ir(C^N)(2)(μ-Cl)}(2)]. When triflic acid or boron trifluoride are used, a source of chloride (here tetrabutylammonium chloride) is added to obtain the same chloro-bridged iridium(III) dimer. Then, we advantageously used this degradation reaction for the efficient synthesis of tris-heteroleptic cyclometalated iridium(III) complexes [Ir(C^N(1))(C^N(2))(L)], a family of cyclometalated complexes otherwise challenging to prepare. We used an iridium(I) complex, [{Ir(COD)(μ-Cl)}(2)], and a stoichiometric amount of two different C^N ligands (C^N(1) = ppy; C^N(2) = diFppy) as starting materials for the swift preparation of the chloro-bridged iridium(III) dimers. After reacting the mixture with acetylacetonate and subsequent purification, the tris-heteroleptic complex [Ir(ppy)(diFppy)(acac)] could be isolated with good yield from the crude containing as well the bis-heteroleptic complexes [Ir(ppy)(2)(acac)] and [Ir(diFppy)(2)(acac)]. Reaction of the tris-heteroleptic acac complex with hydrochloric acid gives pure heteroleptic chloro-bridged iridium dimer [{Ir(ppy)(diFppy)(μ-Cl)}(2)], which can be used as starting material for the preparation of a new tris-heteroleptic iridium(III) complex based on these two C^N ligands. Finally, we use DFT/LR-TDDFT to rationalize the impact of the two different C^N ligands on the observed photophysical and electrochemical properties.  相似文献   

8.
A series of [−2, −1, 0] charged-ligand based iridium(III) complexes of [Ir(bph)(bpy)(acac)] ( 1 ), [Ir(bph)(2MeO-bpy)(acac)] ( 2 ), [Ir(bph)(2CF3-bpy)(acac)] ( 3 ), [Ir(bph)(bpy)(2tBu-acac)] ( 4 ) and [Ir(bph)(bpy)(CF3-acac)] ( 5 ), which using biphenyl as dianionic ligand [−2], acetylacetone (or its derivatives) as monoanionic ligand [−1], and 2,2′-bipyridine (or its derivatives) as neutral ligand [0] were designed and synthesized. The chemical structures were well characterized. All of the ligands have simple chemical structures, thus further making the complexes have excellent thermal stability and are easy to sublimate and purify. Phosphorescent characteristics with short emission lifetime were demonstrated for these emitters. Notably, all of the complexes exhibit remarkable deep red/near infrared emission, which is quite different from the reported [−1, −1, −1] charged-ligand based iridium(III) complexes. The photophysical properties of these complexes are regularly improved by introducing electron-donating or -withdrawing groups into [−1] or [0] charged-ligand. The related organic light-emitting diodes exhibited deep red/near infrared emission with acceptable external quantum efficiency and low turn-on voltage (<2.6 V). This work provides a new idea for the construction of new type phosphorescent iridium(III) emitters with different valence states of [−2, −1, 0] charged ligands, thus offering new opportunities and challenges for their optoelectronic applications.  相似文献   

9.
以立体位阻3-乙酰基樟脑为辅助配体合成了系列新型的环金属铱配合物3-乙酰基樟脑-2-(2,4-二氟)苯基吡啶环金属铱配合物[(46dfppy)2Ir(acam)], 3-乙酰基樟脑-2-苯基吡啶环金属铱配合物[(ppy)2Ir(acam)], 3-乙酰基樟脑-2-苯并噻吩吡啶环金属铱配合物[(btp)2Ir(acam)]. 将配合物的吸收光谱、光致发光光谱以及光致发光效率与辅助配体为乙酰丙酮(acac)的对应配合物进行了比较, 发现在配合物中引入具有大空间位阻的3-乙酰基樟脑使配合物的光致发光效率均有所提高. 并将(ppy)2Ir(acam)用于有机电致发光器件, 电致发光光谱在516 nm 处有一最大强度峰, 驱动电压为12 V 时最大亮度为10930 cd/m2, 最大亮度效率达到14.6 cd/A, 电压为10.7 V 时最大功率为4.23 lm/W, 亮度为698 cd/m2.  相似文献   

10.
Ruthenium aqua complexes [(eta(6)-C(6)Me(6))Ru(II)(L)(OH(2))](2+) {L = bpy (1) and 4,4'-OMe-bpy (2), bpy = 2,2'-bipyridine, 4,4'-OMe-bpy = 4,4'-dimethoxy-2,2'-bipyridine} and iridium aqua complexes [Cp*Ir(III)(L)(OH(2))](2+) {Cp* = eta(5)-C(5)Me(5), L = bpy (5) and 4,4'-OMe-bpy (6)} act as catalysts for hydrogenation of CO(2) into HCOOH at pH 3.0 in H(2)O. The active hydride catalysts cannot be observed in the hydrogenation of CO(2) with the ruthenium complexes, whereas the active hydride catalysts, [Cp*Ir(III)(L)(H)](+) {L = bpy (7) and 4,4'-OMe-bpy (8)}, have successfully been isolated after the hydrogenation of CO(2) with the iridium complexes. The key to the success of the isolation of the active hydride catalysts is the change in the rate-determining step in the catalytic hydrogenation of CO(2) from the formation of the active hydride catalysts, [(eta(6)-C(6)Me(6))Ru(II)(L)(H)](+), to the reactions of [Cp*Ir(III)(L)(H)](+) with CO(2), as indicated by the kinetic studies.  相似文献   

11.
The series of 4-center unsaturated chelate ligands A═B-C═D with redox activity to yield (-)A-B═C-D(-) in two steps has been complemented by two new combinations RNNC(R')E, E = O or S, R = R' = Ph. The ligands N-benzoyl-N'-phenyldiazene = L(O), and N-thiobenzoyl-N'-phenyldiazene = L(S), (obtained in situ) form structurally characterized compounds [(acac)(2)Ru(L)], 1 with L = L(O), and 3 with L = L(S), and [(bpy)(2)Ru(L)](PF(6)), 2(PF(6)) with L = L(O), and 4(PF(6)) with L = L(S) (acac(-) = 2,4-pentanedionato; bpy = 2,2'-bipyridine). According to spectroscopy and the N-N distances around 1.35 ? and N-C bond lengths of about 1.33 ?, all complexes involve the monoanionic (radical) ligand form. For 1 and 3, the antiferromagnetic spin-spin coupling with electron transfer-generated Ru(III) leads to diamagnetic ground states of the neutral complexes, whereas the cations 2(+) and 4(+) are EPR-active radical ligand complexes of Ru(II). The complexes are reduced and oxidized in reversible one-electron steps. Electron paramagnetic resonance (EPR) and UV-vis-NIR spectroelectrochemistry in conjunction with time-dependent density functional theory (TD-DFT) calculations allowed us to assign the electronic transitions in the redox series, revealing mostly ligand-centered electron transfer: [(acac)(2)Ru(III)(L(0))](+) ? [(acac)(2)Ru(III)(L(?-))] ? [(acac)(2)Ru(III)(L(2-))](-)/[(acac)(2)Ru(II)(L(?-))](-), and [(bpy)(2)Ru(III)(L(?-))](2+)/[(bpy)(2)Ru(II)(L(0))](2+) ? [(bpy)(2)Ru(II)(L(?-))](+) ? [(bpy)(2)Ru(II)(L(2-))](0). The differences between the O and S containing compounds are rather small in comparison to the effects of the ancillary ligands, acac(-) versus bpy.  相似文献   

12.
The mechanism for triplet energy transfer from the green-emitting fac-tris[2-(4'-tert-butylphenyl)pyridinato]iridium (Ir(tBu-ppy)3) complex to the red-emitting bis[2-(2'-benzothienyl)pyridinato-N,C3')(acetylacetonato)iridium (Ir(btp)2(acac)) phosphor has been investigated using steady-state and time-resolved photoluminescence spectroscopy. [2,2';5,'2' ']Terthiophene (3T) was also used as triplet energy acceptor to differentiate between the two common mechanisms for energy transfer, i.e., the direct exchange of electrons (Dexter transfer) or the coupling of transition dipoles (F?rster transfer). Unlike Ir(btp)2(acac), 3T can only be active in Dexter energy transfer because it has a negligible ground state absorption to the 3(pi-pi*) state. The experiments demonstrate that in semidilute solution, the 3MLCT state of Ir(tBu-ppy)3 can transfer its triplet energy to the lower-lying 3(pi-pi*) states of both Ir(btp)2(acac) and 3T. For both acceptors, this transfer occurs via a diffusion-controlled reaction with a common rate constant (ken = 3.8 x 10(9) L mol-1 s-1). In a solid-state polymer matrix, the two acceptors, however, show entirely different behavior. The 3MLCT phosphorescence of Ir(tBu-ppy)3 is strongly quenched by Ir(btp)2(acac) but not by 3T. This reveals that under conditions where molecular diffusion is inhibited, triplet energy transfer only occurs via the F?rster mechanism, provided that the transition dipole moments involved on energy donor and acceptor are not negligible. With the use of the F?rster radius for triplet energy transfer from Ir(tBu-ppy)3 to Ir(btp)2(acac) of R0 = 3.02 nm, the experimentally observed quenching is found to agree quantitatively with a model for F?rster energy transfer that assumes a random distribution of acceptors in a rigid matrix.  相似文献   

13.
Dinuclear Ru(III) complexes, [Ru(III)(acac)(2)(dabe)Ru(III)(acac)(2)] (acacH = acetylacetone; dabeH(2) = 1, 2-diacetyl-1,2-dibenzoylethane) and [Ru(III)(acac)(2)(tbet)Ru(III)(acac)(2)] (tbetH(2) = 1,1,2,2-tetrabenzoylethane) were synthesized by reacting [Ru(acac)(2)(CH(3)CN)(2)]PF(6) with dabeH(2) and tbetH(2) respectively, in toluene. The X-ray structural analysis of a meso-type dinuclear Ru(III) complex, ΔΛ-[Ru(III)(acac)(2)(dabe)Ru(III)(acac)(2)], showed that the bridging part became chiral due to the orthogonal twisting of two non-symmetrical β-diketonato moieties. To confirm this conclusion, the complex was resolved chromatographically to provide a pair of optical antipodes. Such chirality in the bridging part was not generated for [Ru(III)(acac)(2)(tbet)Ru(III)(acac)(2)], because the β-diketonato moieties in tbet(2-) are symmetrical.  相似文献   

14.
Binuclear beta-diketonatoruthenium(III) complexes [[Ru(acac)(2)](2)(tae)], [[Ru(phpa)(2)](2)(tae)], and [(acac)(2)Ru(tae)Ru(phpa)(2)] and binuclear and mononuclear bipyridine complexes [[Ru(bpy)(2)](2)(tae)](PF(6))(2) and [Ru(bpy)(2)(Htae)]PF(6) (acac = 2,4-pentanedionate ion, phpa = 2,2,6,6-tetramethyl-3,5-heptanedionate ion, tae = 1,1,2,2-tetraacetylethanate dianion, and bpy = 2,2'-bipyridine) were synthesized. The new complexes have been characterized by (1)H NMR, MS, and electronic spectral data. Crystal and molecular structures of [[Ru(acac)(2)](2)(tae)] have been solved by single-crystal X-ray diffraction studies. Crystal data for the meso isomer of [[Ru(acac)(2)](2)(tae)] have been confirmed by the dihedral angle result that two acetylacetone units of the bridging tae ligand are almost perpendicular to one another. A detailed investigation on the electrochemistry of the binuclear complexes has been carried out. The electrochemical behavior details of the binuclear complexes have been compared with those of the mononuclear complexes obtained from the half-structures of the corresponding binuclear complexes. Studies on the effects of solvents on the mixed-valence states of Ru(II)-Ru(III) and Ru(III)-Ru(IV) complexes have been carried out by various voltammetric and electrospectroscopic techniques. A correlation between the comproportionation constant (K(c)) and the donor number of the solvent has been obtained. The K(c) values for the binuclear complexes have been found to be low because of the fact that two acetylacetone units of the bridging tae ligand are not in the same plane, as revealed by the crystal structure of [[Ru(acac)(2)](2)(tae)].  相似文献   

15.
The first neutral, [IrClF(2)(NHC)(COD)] and [IrClF(2)(CO)(2)(NHC)] (NHC = IMes, IPr), and cationic, [IrF(2)py(IMes)(COD)][BF(4)] and [IrF(2)L(CO)(2)(NHC)][BF(4)] (NHC = IMes, L = PPh(2)Et, PPh(2)CCPh, py; NHC = IPr, L = py), NHC iridium(III) fluoride complexes, have been synthesised by the xenon difluoride oxidation of iridium(I) substrates. The stereochemistries of these iridium(III) complexes have been confirmed by multinuclear NMR spectroscopy in solution and no examples of fluoride-trans-NHC arrangements were observed. Throughout, CO was found to be a better co-ligand for the stabilisation of the iridium(III) fluoride complexes than COD. Attempts to generate neutral trifluoroiridium(III) complexes, [IrF(3)(CO)(NHC)], via the ligand substitution reaction of [IrF(3)(CO)(3)] with the free NHCs were unsuccessful.  相似文献   

16.
Three novel cyclometalated ligands 1-benzyl-2-phenyl-1H-benzoimidazole(BPBM), 1-(4-methoxy-benzyl)-2-(4-methoxy-phenyl)-1H-benzoimidazole(MBMPB) and 4-[2-(4-dimethylamino-phenyl)-benzoinidazol-1-ylmethyl]-phenyl-dimethyl-amine(DBPA) were designed and synthesized, and the corresponding highly efficiency green-emitting phosphorescent iridium complexes Ir(BPBM)2(acac)(1), Ir(MBMPB)2(acac)(2) and Ir(DPBA)2(acac) (3) with acetylacetone(acac) as auxiliary ligand were also synthesized. The ligands are functionalized by bulky non-planarity substituents, thus the phosphorescent concentration quenching is substantially suppressed, and all the complexes exhibit bright photoluminescence(PL) in solid state. The photo-physical properties of the three iridium complexes were researched in detail. The results indicate that they have potential application in fabricating non-doped electrophosphorescence device.  相似文献   

17.
Liu Y  Li M  Zhao Q  Wu H  Huang K  Li F 《Inorganic chemistry》2011,50(13):5969-5977
Phosphorescent iridium(III) complexes have been attracting increasing attention in applications as luminescent chemosensors. However, no instance of an iridium(III) complex being used as a molecular logic gate has hitherto been reported. In the present study, two iridium(III) complexes, [Ir(ppy)(2)(PBT)] and [Ir(ppy)(2)(PBO)], have been synthesized (PBT, 2-(2-Hydroxyphenyl)-benzothiazole; PBO, 2-(2-hydroxyphenyl)-benzoxazole), and their chemical structures have been characterized by single-crystal X-ray analysis. Theoretical calculations and detailed studies of the photophysical and electrochemical properties of these two complexes have shown that the N^O ligands dominate their luminescence emission properties. Moreover, [Ir(ppy)(2)(PBT)], containing a sulfur atom in the N^O ligand, can serve as a highly selective chemodosimeter for Hg(2+) with ratiometric and naked-eye detection, which is associated with the dissociation of the N^O ligand PBT from the complex. Furthermore, complex [Ir(ppy)(2)(PBT)] has been further developed as an AND and INHIBIT logic gate with Hg(2+) and histidine as inputs.  相似文献   

18.
A series of bis(2-phenylbenzothiozolato-N,C(2'))iridium(acetylacetonate) [(bt)(2)Ir(acac)] derivatives, 1-4, were synthesized. Different substituents (CF(3), F, CH(3), OCH(3)) were introduced in the benzothiazole ring to study the substituent effect on the photophysical, electrochemical properties and electroluminescent performance of the complexes, and finally to select high-performance phosphors for use in organic light-emitting diodes (OLEDs). All complexes 1-4 and (bt)(2)Ir(acac) are orange-emitting with tiny spectral difference, despite the variation of the substituent. However, the phosphorescent quantum yield increases with the electron-withdrawing ability of the substituent. This is in contrast to the previous observation that the substituent in the phenyl ring bonded to the metal center of (bt)(2)Ir(acac) not only affected the luminescent quantum efficiency but also greatly tuned the emission color of the complexes. Quantum chemical calculations revealed that the substituents in this position do not make a significant contribution to both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), which probably accounts for the fact that they do no strongly influence the bandgap and emission color of the complexes. Orange OLEDs were fabricated using 1-4 as doped emitters. The electron-withdrawing CF(3) and F groups favor improving the electroluminescence efficiency in comparison with that of the parent (bt)(2)Ir(acac), while electron-donating CH(3) and OCH(3) are not favorable for light emission. The complex 1 based OLED exhibited a maximum luminance efficiency of 54.1 cd A(-1) (a power efficiency of 24 lm W(-1) and an external quantum efficiency of 20%), which are among the best results ever reported for vacuum deposited orange OLEDs so far.  相似文献   

19.
Chemical reaction of [Ru(III)(acac)(2)(CH(3)CN)(2)]ClO(4) (1) with 2-methylthioaniline, HL(1) in ethanol under basic conditions yielded three new complexes Ru(II)(acac)(2)(L(1b)) (1b), (L(1b) = 4-imino-3-(methylsulfanyl)cyclohexa-2,5-dien-1-one), Ru(III)(acac)(2)(L(1c)) (1c), (HL(1c) = N-(2-methylthiophenyl)formamide) and (acac)(2)Ru(II)(μ-L(1d))Ru(II)(acac)(2) (1d), (L(1d) = 1,4-bis(2-methylthioaniline)-1,4-diazabutadiene) via the intermediate Ru(III)(acac)(2)(L(1a)) (1a, L(1a) = (L(1))(-) = 2-methylthioanilide). The reaction proceeded through temperature induced valence tautomerisation between the Ru(III) center and its 2-methylthioanilide counterpart in 1a with concomitant reduction of ruthenium from +III to +II oxidation state and oxidation of ligand L(1a), resulting in aromatic ring hydroxylation, N-formylation and C-C bond formation reactions. All the complexes have been characterised by their single-crystal X-ray structure determination and various spectroscopic and electrochemical techniques. The identity of complex 1a has been confirmed by X-ray crystal structure determination of complex 2, a phenyl analogue of complex 1a. The complexes (1a-d) showed intense charge transfer (MLCT/LMCT) transition in the long wavelength region. The paramagnetic compounds, 1a and 1c, along with the diamagnetic compound 1b showed two one-electron responses in the ranges, -0.4 to -1.0 V and 0.3 to 1.1 V. The diamagnetic complex 1d displayed two successive one-electron reversible reductions (-1.31 and -1.55 V) and two one-electron reversible oxidation processes (-0.036 and 0.51 V). The redox processes are characterized by EPR spectroscopy and spectroelectrochemistry. The compound 1c has been found to exhibit solvatochromism and concentration dependent aggregation in solution.  相似文献   

20.
Paramagnetic diruthenium(III) complexes (acac)(2)Ru(III)(mu-OC(2)H(5))(2)Ru(III)(acac)(2) (6) and [(acac)(2)Ru(III)(mu-L)Ru(III)(acac)(2)](ClO(4))(2), [7](ClO(4))(2), were obtained via the reaction of binucleating bridging ligand, N,N,N',N'-tetra(2-pyridyl)-1,4-phenylenediamine [(NC(5)H(4))(2)-N-C(6)H(4)-N-(NC(5)H(4))(2), L] with the monomeric metal precursor unit (acac)(2)Ru(II)(CH(3)CN)(2) in ethanol under aerobic conditions. However, the reaction of L with the metal fragment Ru(II)(bpy)(2)(EtOH)(2)(2+) resulted in the corresponding [(bpy)(2)Ru(II) (mu-L) Ru(II)(bpy)(2)](ClO(4))(4), [8](ClO(4))(4). Crystal structures of L and 6 show that, in each case, the asymmetric unit consists of two independent half-molecules. The Ru-Ru distances in the two crystallographically independent molecules (F and G) of 6 are found to be 2.6448(8) and 2.6515(8) A, respectively. Variable-temperature magnetic studies suggest that the ruthenium(III) centers in 6 and [7](ClO(4))(2) are very weakly antiferromagnetically coupled, having J = -0.45 and -0.63 cm(-)(1), respectively. The g value calculated for 6 by using the van Vleck equation turned out to be only 1.11, whereas for [7](ClO(4))(2), the g value is 2.4, as expected for paramagnetic Ru(III) complexes. The paramagnetic complexes 6 and [7](2+) exhibit rhombic EPR spectra at 77 K in CHCl(3) (g(1) = 2.420, g(2) = 2.192, g(3) = 1.710 for 6 and g(1) = 2.385, g(2) = 2.177, g(3) = 1.753 for [7](2+)). This indicates that 6 must have an intermolecular magnetic interaction, in fact, an antiferromagnetic interaction, along at least one of the crystal axes. This conclusion was supported by ZINDO/1-level calculations. The complexes 6, [7](2+), and [8](4+) display closely spaced Ru(III)/Ru(II) couples with 70, 110, and 80 mV separations in potentials between the successive couples, respectively, implying weak intermetallic electrochemical coupling in their mixed-valent states. The electrochemical stability of the Ru(II) state follows the order: [7](2+) < 6 < [8](4+). The bipyridine derivative [8](4+) exhibits a strong luminescence [quantum yield (phi) = 0.18] at 600 nm in EtOH/MeOH (4:1) glass (at 77 K), with an estimated excited-state lifetime of approximately 10 micros.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号