首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of the measurement of Raman scattering spectra and infra-red absorption spectra of densified vitreous silica are reported. Raman active-low frequency vibrations are largely changed by compression.  相似文献   

2.
The concentration of radon in soil usually varies between a few kBq/m3 and tens or hundreds of kBq/m3 depending upon the geographical region. This causes the transport of radon from the soil to indoor environments by diffusion and advection through the pore space of concrete. To reduce indoor radon levels, the use of concrete with low porosity and a low radon diffusion coefficient is recommended. A method of reducing the radon diffusion coefficient through concrete and hence the indoor radon concentration by using silica fume to replace an optimum level of cement was studied. The diffusion coefficient of the concrete was reduced from (1.63 ± 0.3) × 10−7 to (0.65 ± 0.01) × 10−8 m2/s using 30% substitution of cement with silica fume. The compressive strength of the concrete increased as the silica-fume content increased, while radon exhalation rate and porosity of the concrete decreased. This study suggests a cost-effective method of reducing indoor radon levels.  相似文献   

3.
The linewidth of longitudinal acoustic waves in densified silica glass is obtained by inelastic x-ray scattering. It increases with a high power alpha of the frequency up to a crossover where the waves experience strong scattering. We find that alpha is at least 4, and probably larger. Resonance and hybridization of acoustic waves with the boson-peak modes seems to be a more likely explanation for these findings than Rayleigh scattering from disorder.  相似文献   

4.
PZT–silica fume cement (PZT–SFC) composites were produced using PZT (at 50% and 60% by volume) and silica fume cement (cement containing silica fume of 5% and 10% by weight). PZT–Portland cement with no silica fume was also produced to allow comparison of the results. Dielectric constants of PZT–SFC composites are found to be higher than that of PZT–PC composite where εr value was found to increase with increasing SF content (εr values of composite with SF at 0%, 5% and 10% are 117, 125 and 178, respectively). PZT–SFC composites were successfully poled and d33 results of PZT–SFC composites (d33 = 18 pC/N) were found to be marginally higher than that of PZT–PC composite (d33 = 17 pC/N). SEM micrograph also shows a dense matrix of SFC hydration product surrounding the PZT particles. From the results, these PZT–SFC composites are therefore promising materials for use in structural applications and should be ideal for high strength structures where SFC is used in the host structure.  相似文献   

5.
In this paper, the growth of polycrystalline chemical vapour deposition (CVD) diamond thin films on fused silica optical fibres has been investigated. The research results show that the effective substrate seeding process can lower defect nucleation, and it simultaneously increases surface encapsulation. However, the growth process on glass requires high seeding density. The effects of suspension type and ultrasonic power were the specific objects of investigation. In order to increase the diamond density, glass substrates were seeded using a high-power sonication process. The highest applied power of sonotrode reached 72 W during the performed experiments. The two, most common diamond seeding suspensions were used, i.e. detonation nanodiamond dispersed in (a) dimethyl sulfoxide and (b) deionised water. The CVD diamond nucleation and growth processes were performed using microwave plasma assisted chemical vapour deposition system. Next, the seeding efficiency was determined and compared using the numerical analysis of scanning electron microscopy images. The molecular composition of nucleated diamond was examined with micro-Raman spectroscopy. The sp3/sp2 band ratio was calculated using Raman spectra deconvolution method. Thickness, roughness, and optical properties of the nanodiamond films in UV–vis wavelength range were investigated by means of spectroscopic ellipsometry. It has been demonstrated that the high-power sonication process can improve the seeding efficiency on glass substrates. However, it can also cause significant erosion defects at the fibre surface. We believe that the proposed growth method can be effectively applied to manufacture the novel optical fibre sensors. Due to high chemical and mechanical resistance of CVD diamond films, deposition of such films on the sensors is highly desirable. This method enables omitting the deposition of an additional adhesion interlayer at the glass–nanocrystalline interface, and thus potentially increases transmittance of the optical system.  相似文献   

6.
An autoclaving treatment for disks made of neat Portland cement and cement with 5% silica fume hardened pastes was carried out to obtain suitable shield blocks for gamma radiation sources. The attenuation parameters such as the total linear attenuation coefficients, the mean-free-paths and the half-value thickness for different thicknesses at various periods of autoclaving were obtained. It was found that the attenuation by the neat cement disks autoclaved for 12 h and of 13.8 cm thickness and the disks of cement with 5% silica fume autoclaved for 6 h and of 12.9 cm thickness were the same and identical to that obtained by 3 cm thick sheets of lead. These results are interpreted by measuring the bulk density of the samples and are supported by measuring the compressive strength for the hardened samples.  相似文献   

7.
Enhancement of ultrasonic cavitation yield by multi-frequency sonication   总被引:6,自引:0,他引:6  
The paper reports the enhanced effect of multi-frequency ultrasonic irradiation on cavitation yield. The cavitation yield is characterized by electrical conductivity determination, fluorescence intensity determination and iodine release method. Two-frequency (28 kHz/0.87 MHz) orthogonal continuous ultrasound, two-frequency (28 kHz/0.87 MHz) orthogonal pulse ultrasound and three-frequency (28 kHz/1.0 MHz/1.87 MHz) orthogonal continuous ultrasound have been used. It has been found that the combined irradiation of two or more frequencies of ultrasound can produce a significant increase in cavitation yield compared with single frequency irradiation. The possible mechanisms of the enhanced effect are briefly discussed.  相似文献   

8.
The fine powdered silica by-product of processing of aluminum fluoride (fertilizer plant, Lithuania) was used for zeolite synthesis as silica and aluminum source. The effect of sonication time and the time of hydrothermal synthesis on crystallinity of the synthesized zeolite were studied. This allowed the transformation of the by-product to the mixture of Na–P zeolite and Na–X zeolite. It was determined that ultrasonic-assisted hydrothermal action effected the “diamond” shape formation of Na–P zeolite with clear crystal edges. Na–P zeolite had the morphology of pseudo-spherical forms constituted by small plates when hydrothermal treatment (without sonication) was use for the preparation of zeolites. Moreover, it was determined that ultrasonic-assisted hydrothermal method effected a reduction in the crystal size compared with the zeolites which were synthesized only by using hydrothermal synthesis. The total amount of zeolites as high as 88–93% was achieved after 24 h of hydrothermal treatment followed or unfollowed by sonication. By using longer duration (20 min) of ultrasound pretreatment it is possible to reduce the duration of hydrothermal synthesis: from 24 h to 12 h of hydrothermal treatment. In this case, similar results of total amount of zeolites were detected. In the present work, low-cost raw materials, such as silica by-product have been investigated for the production of zeolites.  相似文献   

9.
The structure, phase composition and dislocation substructure of 20Cr23Ni18 steel subjected to electron-beam treatment and subsequent multicycle fatigue loading until destruction were studied by scanning and transmission electron microscopy. It was shown that electron-beam treatment with an energy density of 20 J/cm2 increases the fatigue durability by a factor of 2.1. The cause of steel fatigue destruction is analyzed and a way of further increasing the fatigue durability is proposed.  相似文献   

10.
The crystallinity of silica glass fused from Brazilian quartz was studied by Doppler-broadening techniques after heat treatment in the temperature range between 1000°C and 1500°C. Paper F13 presented at 4th Internat'l Conf. Positron Annihilation, Helsing?r, Denmark (August 1976)  相似文献   

11.
The degradation of Acid Orange 52 in aqueous solutions was investigated by using three processes (photocatalysis, sonolysis, and photocatalysis with sonication). In the case of photocatalysis, although the concentration of Acid Orange 52 decreased to 35% in 480 min, the color of the solution was not disappeared. In the case of sonolysis, it was decomposed completely in 300 min, but the total organic carbon concentration decreased down by only about 13% in 480 min. In the case of photocatalysis with sonication, the concentration of Acid Orange 52 reached to 0 in 240 min and the total organic carbon concentration decreased by about 87% in 480 min. These results indicate that the ultrasonic irradiation enhanced the photocatalytic degradation. The addition of chloride ion (50 ppm) into Acid Orange 52 solution decreased the decomposition efficiency for photocatalysis. In the cases of sonolysis and photocatalysis with sonication, the decomposition efficiency did not change significantly by the addition of chloride ion. These results indicate that chloride ion disturbs the photocatalysis of dye, but the decomposition of dye using the irradiation of ultrasound is not influenced by chloride ion. From these results, it is considered that the photocatalysis with sonication is most effective for the decomposition of dye in the three processes in this study.  相似文献   

12.
13.
14.
The comparison of enhancement effect of pentachlorophenol sonolysis at 20 kHz by different dual-frequency ultrasonic irradiations has been investigated. Dual-frequency (20 kHz/40 kHz, 20 kHz/530 kHz, 20 kHz/800 kHz and 20 kHz/1040 kHz) ultrasounds have been used. It has been found that the rate of pentachlorophenol degradation at dual-frequency ultrasonic irradiation is the highest compared to mono-frequency ultrasonic systems. The combination of dual-frequency systems has synergistic effect and the enhancement effect of sonochemical degradation of pentachlorophenol at 20 kHz by dual-frequency systems appears to be remarkable frequency sensitive. The order of contribution to the enhancement effect of sonochemical degradation of pentachlorophenol at 20 kHz is as follows: 530 kHz > 800 kHz > 40 kHz > 1040 kHz.  相似文献   

15.
In this study, the efficiency of ultrasonic disruption of Chaetoceros gracilis, Chaetoceros calcitrans, and Nannochloropsis sp. was investigated by applying ultrasonic waves of 0.02, 0.4, 1.0, 2.2, 3.3, and 4.3 MHz to algal suspensions. The results showed that reduction in the number of algae was frequency dependent and that the highest efficiency was achieved at 2.2, 3.3, and 4.3 MHz for C. gracilis, C. calcitrans, and Nannochloropsis sp., respectively. A review of the literature suggested that cavitation, rather than direct effects of ultrasonication, are required for ultrasonic algae disruption, and that chemical effects are likely not the main mechanism for algal cell disruption. The mechanical resonance frequencies estimated by a shell model, taking into account elastic properties, demonstrated that suitable disruption frequencies for each alga were associated with the cell’s mechanical properties. Taken together, we consider here that physical effects of ultrasonication were responsible for algae disruption.  相似文献   

16.
A simple and green process to prepare copper iodide in nano scale via sonication was carried out. Subsequently, this nanoparticles was used as an efficient catalyst for the synthesis of 2-aryl-5-methyl-2,3-dihydro-1H-3-pyrazolones via four-component reaction of hydrazine, ethyl acetoacetate, aldehyde and β-naphthol in water under ultrasound irradiation. The combinatorial synthesis was attained for this procedure with applying ultrasound irradiation while making use of water as green ambient. Simple work-up, excellent yield of products and short reaction times are some of the important features of this protocol. Notably, this catalyst could be recycled and reused for five times without noticeably decreasing the catalytic activity.  相似文献   

17.
Abstract

Hydrothermal and solvothermal (isopropanol) treatments of gadolinium oxide and silica were investigated under different pressure and temperature conditions. Products were examined by infrared vibrational spectroscopy (IR), x-ray powder diffraction (XRD) and thermal analysis (DTA, TG). Hexagonal gadolinium hydroxide was obtained in hydrothermal conditions, even in presence of silica, while no change was observed from isopropanolic medium treatment. Hydrothermally treated samples are more reactive as precursors for solid state reactions in inorganic synthesis.  相似文献   

18.
李岩  曲士良 《中国物理 B》2012,21(3):34208-034208
We fabricated complex microfluidic devices in silica glass by water-assisted femtosecond laser ablation and subsequent heat treatment.The experimental results show that after heat treatment,the diameter of the microchannels is significantly reduced and the internal surface roughness is improved.The diameters of the fabricated microchannels can be modulated by changing the annealing temperature and the annealing time.During annealing,the temperature affects the diameter and shape of the protrusions in microfluidic devices very strongly,and these changes are mainly caused by uniform expansion and the action of surface tension.  相似文献   

19.
Modification of nano-fibriform silica by dimethyldichlorosilane   总被引:1,自引:0,他引:1  
The modification of nano-fibriform silica by dimethyldichlorosilane was studied by transmission electron microscopy, X-ray powder diffraction, infrared spectroscopy, Raman spectroscopy, physical N2 adsorption techniques, differential thermal and thermogravimetric analysis, scanning electron microscopy, and elemental analyzer.The results show that dimethyl silane derivatives have been successfully covalently grafted on nano-fibriform silica. The polarity of the modified product decreases with the substitution of -OH groups by siloxyl groups. Therefore, the modified product can be easily dispersed in organic solvent and its compatibility with organic molecules is improved. After modification the pore volume decreases and the ductility greatly increases, indicating that the modified product is of a higher strength than before. The study demonstrates that the modified product can be used as an ideal additive to reinforce the strength of organic materials.  相似文献   

20.
Dianov EM  Bufetov IA  Frolov AA 《Optics letters》2004,29(16):1852-1854
The phenomenon of destruction of silica fiber cladding by the fiber fuse effect has been observed for the first time to the authors' knowledge. Experiments on the optical discharge propagation along a fiber were conducted with fibers of decreased cladding thickness. The destruction of fiber cladding led to expansion of the optical discharge plasma and to a decrease of its density. This resulted in the termination of optical discharge propagation. The section of a fiber with decreased cladding thickness can act as a safety device to halt damage propagation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号