首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
使用草酸盐共沉淀法合成了LiNi0.5Mn0.5O2,并研究了共沉淀时的pH条件对终产物的结构、形貌及电化学性能的影响.采用X射线衍射(XRD)和扫描电镜(SEM)表征了在pH值为4.0、5.5、7.0和8.5时得到的共沉淀和终产物LiNi0.5Mn0.5O2的结构和形貌.使用充放电实验研究了不同pH条件下得到的LiNi0.5Mn0.5O2的电化学性能.结果表明,pH为7.0时,合成的材料颗粒更小、分布最均匀,材料具有良好的层状特征,且材料中锂镍的混排程度最小.电化学测试结果印证了pH为7.0时合成的材料具有更好的电化学性能,在0.1C的倍率下,材料的首次放电比容量达到了185 mAh.g-1,在循环20周后,放电比容量仍然保持在160 mAh.g-1.X射线光电子能谱(XPS)测试结果表明,pH为7.0时合成的LiNi0.5Mn0.5O2中Ni为+2价,Mn为+4价.  相似文献   

2.
采用碳酸盐共沉淀法通过调节NH_3·H_2O用量来实现可控制备超高倍率纳米结构LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料。NH_3·H_2O用量会对颗粒的形貌、粒径、晶体结构以及材料电化学性能产生较大的影响。X射线衍射(XRD)分析和扫描电镜(SEM)结果表明,随着NH_3·H_2O用量的降低,一次颗粒形貌由纳米片状逐渐过渡到纳米球状,且nNH_3·H_2O∶(nNi+nCo+nMn)=1∶2样品晶体层状结构最完善、Li~+/Ni~(2+)阳离子混排程度最低。电化学性能测试结果也证实了nNH_3·H_2O∶(nNi+nCo+nMn)=1∶2样品具有最优异的循环稳定性和超高倍率性能。具体而言,在2.7~4.3 V,1C下循环300次后的放电比容量为119 m Ah·g~(-1),容量保持率为81%,中值电压基本无衰减(保持率为97%)。在100C(18 Ah·g~(-1))的超高倍率下,放电比容量还能达到56 m Ah·g~(-1),具有应用于高功率型锂离子电池的前景。此NH_3·H_2O比例值对于共沉淀法制备其他高倍率、高容量的正/负极氧化物材料具有一定的工艺参考价值。  相似文献   

3.
固相法合成锂离子电池正极材料LiMnO4   总被引:1,自引:0,他引:1  
《合成化学》2001,9(4):359-361,364
  相似文献   

4.
以Na2CO3、(CH3CO2)2Mn.4H2O、Y2O3和CH3COOLi.2H2O为原料,采用高温固相法经过2次灼烧和水热离子交换法得到一系列钇掺杂的LiMn1-xYxO2(x:0.01,0.02,0.03,0.05)化合物。通过XRD、XPS、循环伏安及恒电流充放电测试技术,研究了钇掺杂离子对合成正极材料结构及电化学性能的影响。结果表明,所得产物均具有单斜层状结构。合适的钇掺杂可以起到扩展锂离子脱嵌通道和稳定骨架结构的作用,钇离子的引入部分取代原有的三价锰离子,由于钇离子的离子半径较三价锰离子大,因此稀土掺杂锰酸锂材料的晶胞参数比未掺杂材料大,在一定程度上扩充了锂离子迁移的三维通道,更有利于锂离子的嵌入与脱嵌,提高单斜层状LiMnO2材料的电化学循环可逆性及循环稳定性。通过对所得化合物进行了钇掺杂量及电化学性能的研究,得到性能比较优良的LiY0.021Mn0.979O2化合物,其首次放电比容量为125.7mA.h/g,100次循环以后,放电比容量达212.1mA.h/g,远高于未掺杂材料的放电容量138mA.h/g。交流阻抗测试结果表明,Y3+的掺入能降低材料的电化学反应阻抗和提高材料中Li+的扩散能力。  相似文献   

5.
由溶胶凝胶法合成的锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2在水溶液体系中具有优异的高倍率充放电性能,放电时能够输出极高功率密度.XRD表征证明合成的LiNi1/3Co1/3Mn1/3O2材料具有层状α-NaFeO2结构,SEM形貌显示材料的粒径约为500nm,恒电流充放电测试表明LiNi1/3Co1/3Mn1/3O2材料在pH12的2mol·L-1LiNO3溶液中,以2C(0.36A/g)倍率充放时,比容量达到了147mAh/g.如以80C(14.4A/g)、150C(27A/g)和220C(39.6A/g)的倍率充放,材料的比容量仍可达到64mAh/g、33mAh/g和16mAh/g,而全电池的功率密度分别达到2574W/kg、3925W/kg、4967W/kg.其中80C倍率充放,经1000周循环后,容量保持率为90.9%.  相似文献   

6.
锂离子电池正极材料的晶体结构及电化学性能   总被引:6,自引:0,他引:6  
正极材料是锂离子电池的重要组成部分。作为提供自由脱嵌锂离子的正极材料,其晶体结构的特点决定了锂离子脱嵌路径方式的不同,并对锂离子电池的电化学性能等产生明显影响。本文根据正极材料的晶体结构和锂离子“脱嵌/嵌入”路径方式的不同,重点讨论了一维隧道结构、二维层状结构和三维框架结构正极材料的晶体结构特点、锂离子“脱嵌/嵌入”路径和其电化学性能之间的关系,主要包括一维隧道结构正极材料LiFePO4,二维层状结构正极材料LiMO2(M=Co, Ni, Mn)、Li1+xV3O8和Li2MSiO4 (M=Fe, Mn) 以及三维框架结构正极材料LiMn2O4和Li3V2(PO4)3。揭示了目前锂离子电池正极材料的研究现状和存在问题,并对今后的发展方向进行了评述。  相似文献   

7.
何轶  李敏  李荣华 《化学研究》2010,21(1):36-40
采用高温固相反应合成了一系列的LiMn2-2xSmxSrxO4正极材料(0≤x≤0.1);采用X射线衍射仪分析了合成产物的晶体结构;利用充放电试验测定了产物的电化学性能,利用电化学阻抗谱分析了产物的电化学循环机理.结果表明,所合成的LiMn2-2xSmxSrxO4(x=0,0.01,0.02,0.03,0.04,0.05)样品均保持尖晶石相,属于Fd3m空间群.LiMn1.9Sm0.05Sr0.05O4的电化学性能最佳,首次放电容量为96.8 mAh/g,在3.0~4.4 V区间内50次循环后容量保持率超过96%.与此同时,LiMn2O4和LiMn1.90Sm0.05Sr0.05O4的电极阻抗变化不同,进而影响其电化学性能.  相似文献   

8.
王琳  吕东平  杨勇 《电化学》2011,17(3):318-322
采用水热辅助溶胶凝胶法及球磨包碳技术合成Li2CoxMn1-xSiO4(x=0、 0.1、0.3、0.5、1)与碳纳米管复合材料,X 射线衍射(XRD) 、扫描电镜(SEM)表征复合材料的结构与形貌。用循环伏安(CV) ,交流阻抗(EIS) ,充放电曲线测试材料的电化学性能,并与 Li2MnSiO4/C 和 Li2CoSiO4/C 进行对比。掺钴可以改善Li2MnSiO 4电极的倍率放电性能。  相似文献   

9.
以LiAc,MnAc2和LaCl3为原料,通过高温固相两段烧结合成法制备了4种LiLaxMn2-xO4(Fx,x=0,0.02,0.04,0.06),其结构和形貌经XRD和SEM表征。结果表明,LiLa0.02Mn1.98O4(即F0.02)为纯尖晶石结构,表面形貌为球形。采用活性炭为导电剂制备了Fx的锂离子电池正极材料(Ex),并用循环伏安法研究了Ex的电化学性能。结果表明,E0.02在0.1 C倍率充放电时的首次放电容量为75 mAh·g-1;0.5 C倍率循环充放电时,放电比容量为79 mAh·g-1;经过20次0.2 C倍率循环充放电时,容量保持在80 mAh·g-1。  相似文献   

10.
采用氨蒸发诱导法成功制备出纳米结构LiNi1/3Co1/3Mn1/3O2正极材料,借助X射线衍射(XRD)分析、扫描电镜(SEM)、透射电镜(TEM)、高分辨率透射电镜(HRTEM)、能量分散谱(EDS)和比表面测试等表征手段及恒电流充放电测试研究了其晶体结构、微观形貌和电化学性能.研究表明该方法制备出的材料具有良好的α-NaFeO2层状结构,阳离子混排程度低.纳米片交错堆积而成核桃仁状形貌,片与片之间形成许多纳米孔,而且纳米片的侧面属于{010}活性面,能够提供较多的锂离子的脱嵌通道.在室温下及3.0-4.6 V充放电范围内,该材料在电流密度为0.5C、1C、3C、5C和10C时放电比容量分别为172.90、153.95、147.09、142.16和131.23mAh?g-1.说明其具有优异的电化学性能,非常有潜力用于动力汽车等高功率密度锂离子电池中.  相似文献   

11.
采用喷雾干燥法制备了xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)系列富锂层状固溶体正极材料, 并通过X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、电化学阻抗测试(EIS)以及充放电测试等多种手段研究了样品组分中Li2MnO3 含量变化对材料结构及电化学性能的影响.研究发现, 材料的微观结构随着Li2MnO3含量的增加而逐渐发生转变.当x≤0.2时, 样品的微观结构与其母体材料LiNi5/12Mn5/12Co2/12O2相似; 而当x≥0.4时, 样品的微观结构与Li2MnO3有很高的相似性.当x=0.3时, 材料表现出两相共存的特征.HRTEM结果显示, 随着Li2MnO3含量的增加, 样品中过渡金属原子的排列逐渐由长程有序转变为长程无序而短程有序, 并且在高Li2MnO3含量的样品中观察到了金属阳离子混排的现象.充放电测试结果表明, 当x≤0.6时, 材料的放电比容量随着x的增加而增加; 当x>0.6时, 其放电比容量则随着x的增加而下降; 当x=0.6时, 放电比容量最高, 室温及高温(50℃)下分别为260 和304 mA·h/g.EIS研究结果表明, 这种微观结构上由有序向无序的转变会导致材料电荷转移阻抗的增加, 进而影响材料的电化学性能.  相似文献   

12.
陈宏浩  詹晖  朱先军  周运鸿 《化学学报》2005,63(11):1028-1032,i004
以一种新型的软化学方法——流变相法,成功地合成了锂离子电池正极材料LiNi0.85Co0.15O2.将在600~850℃氧气氛下处理6h后得到的LiNi1-yCoyO2(y=0.10,0.15,0.20,0.25),进行X射线粉末衍射(XRD)与电化学测试.测试结果表明,流变相前体经过800℃烧结后合成的LiNi0.85Co0.15O2晶胞参数a=0.2866nm,c=1.4193nm及晶胞体积V=0.1010nm3,以0.1C倍率在3.0~4.3V(Vs.Li /Li)放电时,首次放电容量可以达到198.2mAh/g,20次循环后,其放电容量仍在174mAh/g以上.  相似文献   

13.
应用低热固相合成法制备锂离子电池正极材料L iCo1/3N i1/3Mn1/3O2.研究该材料的结构与形貌,并比较它在商品L iPF6盐和在实验室合成的L iBOB(L iB(C2O4)2)盐电解液中的电化学性能.在L iPF6/EC+DMC+DEC电解液中,该材料表现出优良的电化学性能,其于0.5C、1C、1.5C、2C、3C放电倍率的初始比容量依次为167、163、163、157、147mAh/g,电池的循环性能也较好,说明低热固相合成的材料的有较好的高倍率性能.在L iBOB/EC+DEC+DE电解液中,0.5C倍率下比容量为160 mAh/g,较之L iPF6盐电解液的相差不大,但在高倍率下的比容量有所下降.  相似文献   

14.
To explore advanced cathode materials for lithium ion batteries (LIBs), a nanoarchitectured LiNi1/3Co1/3Mn1/3O2 (LNCM) material is developed using a modified carbonate coprecipitation method in combination with a vacuum distillation‐crystallisation process. Compared with the LNCM materials produced by a traditional carbonate coprecipitation method, the prepared LNCM material synthesized through this modified method reveals a better hexagonal layered structure, smaller particle sizes (ca. 110.5 nm), and higher specific surface areas. Because of its unique structural characteristics, the as‐prepared LNCM material demonstrates excellent electrochemical properties including high rate capability and good cycleability when it is utilized as a cathode in the lithium ion battery (LIB).  相似文献   

15.
金属氧化物可通过电化学转换反应与锂离子及钠离子发生多电子可逆结构转换,是一类极具应用前景的高容量锂离子和钠离子电池负极材料。实验以氧化石墨烯和铁盐为前驱体,采用简单的溶剂法,成功将Fe2O3纳米单晶粒子均匀负载于石墨烯的导电片层上,获得Fe2O3/rGO(还原氧化石墨烯)纳米复合材料。复合电极在锂离子和钠离子电池中都表现出优异的充放电性能和循环稳定性。实验结果表明石墨烯的包覆不仅能降低Fe2O3发生转换反应的电荷传递阻抗,而且能够稳定电极在循环过程中带来的结构转变,极大改善电极大电流充放能力和循环稳定性。本研究为发展高容量的锂离子和钠离子电池负极材料提供了可行的途径。  相似文献   

16.
正极材料LiNi0.45Co0.1Mn0.45O2的制备与性能   总被引:4,自引:0,他引:4  
正极材料LiNi0.45Co0.1Mn0.45O2的制备与性能;正极材料; 溶胶凝胶合成法; 电化学性能; 锂离子电池  相似文献   

17.
Ti, F复合掺杂改进LiNi1/3Co1/3Mn1/3O2正极材料的电化学性能   总被引:5,自引:0,他引:5  
采用复合离子掺杂技术对LiNi1/3Co1/3Mn1/3O2进行改性, 并对材料的结构及电化学性能进行了考察.  相似文献   

18.
通过共沉淀法制得类球形锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2,并用非水相共沉法对其进行CoAl2O4包覆得到LNCMO(x). 采用X射线衍射(XRD)、扫描电子显微术(SEM)和透射电子显微术(TEM)测试材料的结构和观察材料形貌. 结果表明,CoAl2O4在材料表面形成8 nm均匀包覆层,未改变主体材料的结构. 电化学性能测试表明,1%(by mass)CoAl2O4包覆量的LiNi1/3Co1/3Mn1/3O2材料(LNCMO(1))高充电电压(3.0 ~ 4.6 V,150 mA·g-1)100周期循环放电容量保持率为93.7%(无包覆LNCMO(0)保持率为74.4%);55 °C高温100周期循环容量保持率为77%(无包覆LNCMO(0)保持率17%). XRD和电感耦合等离子体原子发射光谱(ICP-AES)测试表明,CoAl2O4包覆的LNCMO(x)材料可有效地减缓材料中Mn离子在电解液的溶解,提高材料结构稳定性和热稳定性.  相似文献   

19.
测试了不同浓度的电解液阻燃添加剂对镍钴锰三元材料(LiNi0.4Co0.2Mn0.4O2)作为正极的锂离子电池电化学性能的影响. 实验结果表明,当阻燃剂浓度增加时,电池的放电容量下降,电化学反应电阻和锂离子扩散阻力都有所增加,但加入阻燃添加剂的锂离子电池,当充放电的电流相对比较小的时候,循环性能相比于不含阻燃剂的有所提高,循环稳定性得到了改善. 在0.5C倍率电流下,不含阻燃剂时容量保持率为89%,而当阻燃剂含量增至10%后保持率达到94.21%. 当充放电电流为1C时,未使用阻燃剂时容量保持率约为92.22%,当阻燃剂的浓度为10%时容量保持率为93.01%. 在2C倍率下,不含阻燃剂时容量保持率为87.92%. 阻燃剂浓度为10%时,容量保持率有所提升,达到92.16%. 与基础电解液相比,选用含有10%阻燃剂的电解液可使容量保持率提高5%左右,相比于其他浓度,包含10%阻燃剂的电池循环性能也最为稳定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号