首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Plots of log k(0) vs pH for the cyclization of trifluoroethyl and phenyl 2-aminomethylbenzoate to phthalimidine at 30 degrees C in H(2)O are linear with slopes of 1.0 at pH >3. The values of the second-order rate constants k(OH) for apparent OH(-) catalysis in the cyclization reactions are 1.7 x 10(5) and 5.7 x 10(7) M(-)(1) s(-)(1), respectively. These rate constants are 10(5)- and 10(7)-fold greater than for alkaline hydrolysis of trifluoroethyl and phenyl benzoate. The k(OH) for cyclization of the methyl ester is 7.2 x 10(3) M(-)(1) s(-)(1). Bimolecular general base catalysis occurs in the intramolecular nucleophilic reactions of the neutral species. The value of the Bronsted coefficient beta for the trifluoroethyl ester is 0.7. The rate-limiting step in the general base catalyzed reaction involves proton transfer in concert with leaving group departure. The mechanism involving rate-determining proton transfer exemplified by the methyl ester in this series (beta = 1.0) can then be considered a limiting case of the concerted mechanism. General acid catalysis of the neutral species reaction or a kinetic equivalent also occurs when the leaving group is good (pK(a) 相似文献   

2.
Rate constants for the reactions of OH radicals and NO3 radicals with O,O-diethyl methylphosphonothioate [(C(2)H(5)O)(2)P(S)CH(3); DEMPT] and O,O,O-triethyl phosphorothioate [(C(2)H(5)O)(3)PS; TEPT] have been measured using relative rate methods at atmospheric pressure of air over the temperature range 296-348 K for the OH radical reactions and at 296 +/- 2 K for the NO(3) radical reactions. At 296 +/- 2 K, the rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were 20.4 +/- 0.8 and 7.92 +/- 0.27 for DEMPT and TEPT, respectively, and those for the NO(3) radical reactions (in units of 10(-15) cm(3) molecule(-1) s(-1)) were 2.01 +/- 0.20 and 1.03 +/- 0.10, respectively. Upper limits to the rate constants for the reactions of O(3) with DEMPT and TEPT of <6 x 10(-20) cm(3) molecule(-1) s(-1) were determined in each case. Rate constants for the OH radical reactions, measured relative to k(OH + alpha-pinene) = 1.21 x 10(-11) e(436/T) cm(3) molecule(-1) s(-1), resulted in the Arrhenius expressions k(OH + DEMPT) = 1.08 x 10(-11) e(871+/-25)/T cm(3) molecule(-1) s(-1) and k(OH + TEPT) = 8.21 x 10(-13) e(1353+/-49)/T cm(3) molecule(-1) s(-1) over the temperature range 296-348 K, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the reference rate constant. Diethyl methylphosphonate was identified and quantified from the OH radical and NO(3) radical reactions with DEMPT, with formation yields of 21 +/- 4%, independent of temperature, from the OH radical reaction and 62 +/- 11% from the NO(3) radical reaction at 296 +/- 2 K. Similarly, triethyl phosphate was identified and quantified from the OH radical and NO(3) radical reactions with TEPT, with formation yields of 56 +/- 9%, independent of temperature, from the OH radical reaction and 78 +/- 15% from the NO(3) radical reaction at 296 +/- 2 K.  相似文献   

3.
Using relative rate methods, rate constants for the gas-phase reactions of divinyl sulfoxide [CH 2CHS(O)CHCH 2; DVSO] with NO 3 radicals and O 3 have been measured at 296 +/- 2 K, and rate constants for the reaction with OH radicals have been measured over the temperature range of 277-349 K. Rate constants obtained for the NO 3 radical and O 3 reactions at 296 +/- 2 K were (6.1 +/- 1.4) x 10 (-16) and (4.3 +/- 1.0) x 10 (-19) cm (3) molecule (-1) s (-1), respectively. For the OH radical reaction, the temperature-dependent rate expression obtained was k = 4.17 x 10 (-12)e ((858 +/- 141)/ T ) cm (3) molecule (-1) s (-1) with a 298 K rate constant of (7.43 +/- 0.71) x 10 (-11) cm (3) molecule (-1) s (-1), where, in all cases, the errors are two standard deviations and do not include the uncertainties in the rate constants for the reference compounds. Divinyl sulfone was observed as a minor product of both the OH radical and NO 3 radical reactions at 296 +/- 2 K. Using in situ Fourier transform infrared spectroscopy, CO, CO 2, SO 2, HCHO, and divinyl sulfone were observed as products of the OH radical reaction, with molar formation yields of 35 +/- 11, 2.2 +/- 0.8, 33 +/- 4, 54 +/- 6, and 5.4 +/- 0.8%, respectively, in air. For the experimental conditions employed, aerosol formation from the OH radical-initiated reaction of DVSO in the presence of NO was minor, being approximately 1.5%. The data obtained here for DVSO are compared with literature data for the corresponding reactions of dimethyl sulfoxide.  相似文献   

4.
Second-order rate constants, k(OH)(N), M(-)(1) s(-)(1), for the beta-elimination reactions of HF with 2-(2-fluoroethyl)pyridine (2), 3-(2-fluoroethyl)pyridine (3), and 4-(2-fluoroethyl)pyridine (4) in OH(-)/H(2)O, at 50 degrees C and mu = 1 M KCl, are = 0.646 x 10(-)(4) M(-)(1) s(-)(1), = 2.97 x 10(-)(6) M(-)(1) s(-)(1), and = 5.28 x 10(-)(4) M(-)(1) s(-)(1), respectively. When compared with the second-order rate constants for the same processes with the nitrogen-methylated substrates 1-methyl-2-(2-fluoroethyl)pyridinium iodide (5), 1-methyl-3-(2-fluoroethyl)pyridinium iodide (6), and 1-methyl-4-(2-fluoroethyl)pyridinium iodide (7), the methyl-activating factor (MethylAF) can be calculated from the ratio k(OH)(NCH)3/, and a value of 8.7 x 10(5) is obtained with substrates 5/2, a value of 1.6 x 10(3) with 6/3, and a value of 2.1 x 10(4) with 7/4. The high values of MethylAF are in agreement with an irreversible E1cb mechanism (A(N)D(E) + D(N)) for substrates 5 and 7 and with the high stability of the intermediate carbanion related to its enamine-type structure. In acetohydroxamate/acetohydroxamic acid buffers (pH 8.45-9.42) and acetate/acetic acid buffers (pH 4.13-5.13), the beta-elimination reactions of HF, with substrates 2 and 4, occur at NH(+), the substrates protonated at the nitrogen atom of the pyridine ring, even when the [NH(+)] is much lower than the [N], the unprotonated substrate, due to the high proton-activating factor (PAF) value observed: 3.6 x 10(5) for 2 and 6.5 x 10(4) for 4 with acetohydroxamate base. These high PAF values are indicative of an irreversible E1cb mechanism rather than a concerted E2 (A(N)D(E)D(N)) mechanism. Finally, the rate constant for carbanion formation from NH(+) with 2 is k(B)(NH)+ = 0.35 M(-)(1) s(-)(1), which is lower than when chlorine is the leaving group ( = 1.05 M(-)(1) s(-)(1); Alunni, S.; Busti, A. J. Chem. Soc., Perkin Trans. 2 2001, 778). This is direct experimental evidence that some lengthening of the carbon-leaving group bond can occur in the intermediate carbanion. This is a point of interest for interpreting a heavy-atom isotope effect.  相似文献   

5.
The title reactions were studied using laser flash photolysis/laser-induced-fluorescence (FP-LIF) techniques. The two spin-orbit states, Cl*(2P(1/2)) and Cl(2P(3/2)), were detected using LIF at 135.2 and 134.7 nm, respectively. Measured reaction rate constants were as follows (units of cm3 molecule(-1) s(-1)): k(Cl(2P(3/2))+CH3OH) = (5.35 +/- 0.24) x 10(-11), k(Cl(2P(3/2))+C2H5OH) = (9.50 +/- 0.85) x 10(-11), k(Cl(2P(3/2))+n-C3H7OH) = (1.71 +/- 0.11) x 10(-10), and k(Cl(2P(3/2))+i-C3H7OH) = (9.11 +/- 0.60) x 10(-11). Measured rate constants for total removal of Cl*(2P(1/2)) in collisions with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH were (1.95 +/- 0.13) x 10(-10), (2.48 +/- 0.18) x 10(-10), (3.13 +/- 0.18) x 10(-10), and (2.84 +/- 0.16) x 10(-10), respectively; quoted errors are two-standard deviations. Although spin-orbit excited Cl*(2P(1/2)) atoms have 2.52 kcal/mol more energy than Cl(2P(3/2)), the rates of chemical reaction of Cl*(2P(1/2)) with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH are only 60-90% of the corresponding Cl(2P(3/2)) atom reactions. Under ambient conditions spin-orbit excited Cl* atoms are responsible for 0.5%, 0.5%, 0.4%, and 0.7% of the observed reactivity of thermalized Cl atoms toward CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH, respectively.  相似文献   

6.
The rate constants for the reactions of OH and OD with 2-methyl-3-buten-2-ol (MBO) have been measured at 2, 3, and 5 Torr total pressure over the temperature range 300-415 K using a discharge-flow system coupled with laser induced fluorescence detection of OH. The measured rate constants at room temperature and 5 Torr for the OH + MBO reaction in the presence of O2 and the OD + MBO reaction are (6.32 +/- 0.27) and (6.61 +/- 0.66) x 10(-11) cm3 molecule(-1) s(-1), respectively, in agreement with previous measurements at higher pressures. However, the rate constants begin to show a pressure dependence at temperatures above 335 K. An Arrhenius expression of k0 = (2.5 +/- 7.4) x 10(-32) exp[(4150 +/- 1150)/T] cm6 molecule(-2) s(-1) was obtained for the low-pressure-limiting rate constant for the OH + MBO reaction in the presence of oxygen. Theoretical calculations of the energetics of the OH + MBO reaction suggest that the stability of the different HO-MBO adducts are similar, with predicted stabilization energies between 27.0 and 33.4 kcal mol(-1) relative to the reactants, with OH addition to the internal carbon predicted to be 1-4 kcal mol(-1) more stable than addition to the terminal carbon. These stabilization energies result in estimated termolecular rate constants for the OH + MBO reaction using simplified calculations based on RRKM theory that are in reasonable agreement with the experimental values.  相似文献   

7.
Stable nitroxide radicals are potent antioxidants and are among the most effective non-thiol radioprotectants, although they react with hydroxyl radicals more slowly than typical phenolic antioxidants or thiols. Surprisingly, the reduced forms of cyclic nitroxides, cyclic hydroxylamines, are better reductants yet have no radioprotective activity. To clarify the reason for this difference, we studied the kinetics and mechanisms of the reactions of nitroxides and their hydroxylamines with (*)OH radicals and with OH-adducts by using pulse radiolysis, fluorimetric determination of phenolic radiation products, and electron paramagnetic resonance spectrometric determination of nitroxide concentrations following radiolysis. Competition kinetics with phenylalanine as a reference compound in pulse radiolysis experiments yielded rate constants of (4.5 +/- 0.4) x 10(9) M(-1) s(-1) for the reaction of (*)OH radical with 2,2,6,6-tetramethylpiperidine-N-oxyl (TPO), 4-hydroxy-TPO (4-OH-TPO), and 4-oxo-TPO (4-O-TPO), (3.0 +/- 0.3) x 10(9) M(-1) s(-1) for deuterated 4-O-TPO, and (1.0 +/- 0.1) x 10(9) M(-1) s(-1) for the hydroxylamine 4-OH-TPO-H. The kinetic isotope effect suggests the occurrence of both (*)OH addition to the aminoxyl moiety of 4-O-TPO and H-atom abstraction from the 2- or 6-methyl groups or from the 3- and 5-methylene positions. This conclusion was further supported by final product analysis, which demonstrated that (*)OH partially oxidizes 4-O-TPO to the corresponding oxoammonium cation. The rate constants for the reactions of the nitroxides with the OH-adducts of phenylalanine and terephthalate have been determined to be near 4 x 10(6) M(-1) s(-1), whereas the hydroxylamine reacted at least 50 times slower, if at all. These findings indicate that the reactivity toward (*)OH does not explain the differences between the radioprotective activities of nitroxides and hydroxylamines. Instead, the radioprotective activity of nitroxides, but not of hydroxylamines, can be partially attributed to their ability to detoxify OH-derived secondary radicals.  相似文献   

8.
Rate constants for the gas-phase reactions of OH radicals with dimethyl phosphonate [DMHP; (CH3O)2P(O)H] were measured over the temperature range of 278-351 K at atmospheric pressure of air using a relative rate method with 4-methyl-2-pentanone as the reference compound. The Arrhenius expression obtained was 1.01 x 10(-12) e((474 +/- 159)/T) cm(3) molecule(-1) s(-1), where the indicated error is two least-squares standard deviations and does not include uncertainties in the rate constants for the reference compound. Rate constants for the gas-phase reactions of OH radicals with dimethyl methylphosphonate [DMMP, (CH3O)2P(O)CH3], dimethyl ethylphosphonate [DMEP, (CH3O)2P(O)C2H5], diethyl methylphosphonate [DEMP, (C2H5O)2P(O)CH3], diethyl ethylphosphonate [DEEP, (C2H5O)2P(O)C2H5], and triethyl phosphate [TEP, (C2H5O)3PO] were also measured at 278 and/or 283 K for comparison with a previous study (Aschmann, S. M.; Long, W. D.; Atkinson, R. J. Phys. Chem. A, 2006, 110, 7393). With the experimental procedures employed, experiments conducted at temperatures below the dew point where a water film was present on the outside of the Teflon reaction chamber resulted in measured rate constants which were significantly higher than those expected from the extrapolation of rate data obtained at temperatures (283-348 K) above the dew point. Using rate constants measured at > or = 283 K, the resulting Arrhenius expressions (in cm(3) molecule(-1) s(-1) units) are 6.25 x 10(-14) e((1538 +/- 112)/T) for DMMP (283-348 K), 9.03 x 10(-14) e((1539 +/- 27)/T) for DMEP (283-348 K), 4.35 x 10(-13) e((1444 +/- 148)/T) for DEMP (283-348 K), 4.08 x 10(-13) e((1485 +/- 328)/T) for DEEP (283-348 K), and 4.07 x 10(-13) e((1448 +/- 145)/T) for TEP (283-347 K), where the indicated errors are as above. Aerosol formation at 296 +/- 2 K from the reactions of OH radicals with these organophosphorus compounds was relatively minor, with aerosol yields of < or = 8% in all cases.  相似文献   

9.
Rate constants for the reactions of OH radicals and NO3 radicals with dimethyl phosphonate [DMHP, (CH3O)2P(O)H], dimethyl methylphosphonate [DMMP, (CH3O)2P(O)CH3], and dimethyl ethylphosphonate [DMEP, (CH3O)2P(O)C2H5] have been measured at 296 +/- 2 K and atmospheric pressure using relative rate methods. The rate constants obtained for the OH radical reactions (in units of 10(-12) cm3 molecule(-1) s(-1)) were as follows: DMHP, 4.83 +/- 0.25; DMMP, 10.4 +/- 0.6; and DMEP, 17.0 +/- 1.0, with a deuterium isotope effect of k(OH + DMMP)/k(OH + DMMP-d9) = 4.8 +/- 1.2. The rate constants obtained for the NO3 radical reactions (in units of 10(-16) cm3 molecule(-1) s(-1)) were as follows: DMHP, < 1.4; DMMP, 2.0 +/- 1.0; and DMEP, 3.4 +/- 1.4. Upper limits to the rate constants for the O3 reactions of < 8 x 10(-20) cm3 molecule(-1) s(-1) for DMHP and < 6 x 10(-20) cm3 molecule(-1) s(-1) for DMMP and DMEP were determined. Products of the reactions of OH radicals with DMHP, DMMP, and DMEP were investigated in situ using atmospheric pressure ionization mass spectrometry (API-MS) and, for the DMMP and DMEP reactions, Fourier transform infrared (FT-IR) spectroscopy. API-MS analyses showed the formation of products of molecular weight 96 and 126, attributed to CH3OP(O)(H)OH and (CH3O)2P(O)OH, respectively, from DMHP; of molecular weight 110, attributed to CH3OP(O)(CH3)OH, from DMMP; and of molecular weight 124 and 126, attributed to CH3OP(O)(C2H5)OH and (CH3O)2P(O)OH, respectively, from DMEP. FT-IR analyses showed formation (values given are % molar yields) of the following: from DMMP, CO, 54 +/- 6; CO2, 5 +/- 1 in dry air; HCHO, 3.9 +/- 0.7; HC(O)OH, < 1.4 in dry air; RONO2, approximately 4; and formate ester, approximately 8; and from DMEP, CO, 50 +/- 7; CO2, 11 +/- 4; CH3CHO, 18 +/- 8; HCHO, < 7; HC(O)OH, < 6; RONO2, < or = 5; and formate ester, 5.0 +/- 1.5. Possible reaction mechanisms are discussed.  相似文献   

10.
The reflected shock tube technique with multipass absorption spectrometric detection of OH radicals at 308 nm (corresponding to a total path length of approximately 4.9 m) has been used to study the dissociation of methanol between 1591 and 2865 K. Rate constants for two product channels [CH3OH + Kr --> CH3 + OH + Kr (1) and CH3OH + Kr --> 1CH2 + H2O + Kr (2)] were determined. During the course of the study, it was necessary to determine several other rate constants that contributed to the profile fits. These include OH + CH3OH --> products, OH + (CH3)2CO --> CH2COCH3 + H2O, and OH + CH3 --> 1,3CH2 + H2O. The derived expressions, in units of cm(3) molecule(-1) s(-1), are k(1) = 9.33 x 10(-9) exp(-30857 K/T) for 1591-2287 K, k(2) = 3.27 x 10(-10) exp(-25946 K/T) for 1734-2287 K, kOH+CH3OH = 2.96 x 10-16T1.4434 exp(-57 K/T) for 210-1710 K, k(OH+(CH3)(2)CO) = (7.3 +/- 0.7) x 10(-12) for 1178-1299 K and k(OH+CH3) = (1.3 +/- 0.2) x 10(-11) for 1000-1200 K. With these values along with other well-established rate constants, a mechanism was used to obtain profile fits that agreed with experiment to within <+/-10%. The values obtained for reactions 1 and 2 are compared with earlier determinations and also with new theoretical calculations that are presented in the preceding article in this issue. These new calculations are in good agreement with the present data for both (1) and (2) and also for OH + CH3 --> products.  相似文献   

11.
The motivation for the present study comes from the preceding paper where it is suggested that accepted rate constants for OH + NO2 --> NO + HO2 are high by approximately 2. This conclusion was based on a reevaluation of heats of formation for HO2, OH, NO, and NO2 using the Active Thermochemical Table (ATcT) approach. The present experiments were performed in C2H5I/NO2 mixtures, using the reflected shock tube technique and OH-radical electronic absorption detection (at 308 nm) and using a multipass optical system. Time-dependent profile decays were fitted with a 23-step mechanism, but only OH + NO2, OH + HO2, both HO2 and NO2 dissociations, and the atom molecule reactions, O + NO2 and O + C2H4, contributed to the decay profile. Since all of the reactions except the first two are known with good accuracy, the profiles were fitted by varying only OH + NO2 and OH + HO2. The new ATcT approach was used to evaluate equilibrium constants so that back reactions were accurately taken into account. The combined rate constant from the present work and earlier work by Glaenzer and Troe (GT) is k(OH+NO2) = 2.25 x 10(-11) exp(-3831 K/T) cm3 molecule(-1) s(-1), which is a factor of 2 lower than the extrapolated direct value from Howard but agrees well with NO + HO2 --> OH + NO2 transformed with the updated equilibrium constants. Also, the rate constant for OH + HO2 suitable for combustion modeling applications over the T range (1200-1700 K) is (5 +/- 3) x 10(-11) cm3 molecule(-1) s(-1). Finally, simulating previous experimental results of GT using our updated mechanism, we suggest a constant rate for k(HO2+NO2) = (2.2 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1) over the T range 1350-1760 K.  相似文献   

12.
Rate constants for the reactions of OH radicals with dimethyl methylphosphonate [DMMP, (CH3O)2P(O)CH3], dimethyl ethylphosphonate [DMEP, (CH3O)2P(O)C2H5], diethyl methylphosphonate [DEMP, (C2H5O)2P(O)CH3], diethyl ethylphosphonate [DEEP, (C2H5O)2P(O)C2H5], triethyl phosphate [TEP, (C2H5O)3PO] and 1,3,5-trimethylbenzene have been measured over the temperature range 278-348 K at atmospheric pressure of air using a relative rate method. alpha-Pinene (for DEMP, DEEP, TEP and 1,3,5-trimethylbenzene) and di-n-butyl ether (for DMMP and DMEP) were used as the reference compounds, and rate constants for the reaction of OH radicals with di-n-butyl ether were also measured over the same temperature range using alpha-pinene and n-decane as the reference compounds. The Arrhenius expressions obtained for these OH radical reactions (in cm3 molecule(-1) s(-1) units) are 8.00 x 10(-14)e(1470+/-132)/T for DMMP (296-348 K), 9.76 x 10(-14)e(1520+/-14)/T for DMEP (296-348 K), 4.20 x 10(-13)e(1456+/-227)/T for DEMP (296-348 K), 6.46 x 10(-13)e(1339+/-376)/T for DEEP (296-348 K), 4.29 x 10(-13)e(1428+/-219)/T for TEP (296-347 K), and 4.40 x 10(-12)e(738+/-176)/T for 1,3,5-trimethylbenzene (278-347 K), where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the rate constants for the reference compounds. The measured rate constants for di-n-butyl ether are in good agreement with literature data over the temperature range studied (278-348 K).  相似文献   

13.
The rate constants for the reaction of the OH radical with 1,3-butadiene and its deuterated isotopomer has been measured at 1-6 Torr total pressure over the temperature range of 263-423 K using the discharge flow system coupled with resonance fluorescence/laser-induced fluorescence detection of OH. The measured rate constants for the OH + 1,3-butadiene and OH + 1,3-butadiene- d 6 reactions at room temperature were found to be (6.98 +/- 0.28) x 10 (-11) and (6.94 +/- 0.38) x 10 (-11) cm (3) molecule (-1) s (-1), respectively, in good agreement with previous measurements at higher pressures. An Arrhenius expression for this reaction was determined to be k 1 (II)( T) = (7.23 +/- 1.2) x10 (-11)exp[(664 +/- 49)/ T] cm (3) molecule (-1) s (-1) at 263-423 K. The reaction was found to be independent of pressure between 1 and 6 Torr and over the temperature range of 262- 423 K, in contrast to previous results for the OH + isoprene reaction under similar conditions. To help interpret these results, ab initio molecular dynamics results are presented where the intramolecular energy redistribution is analyzed for the product adducts formed in the OH + isoprene and OH + butadiene reactions.  相似文献   

14.
The tryptophan metabolite xanthurenic acid (Xan) has been isolated from aged human cataractous lenses. The photophysical properties of Xan were examined to determine if it is a potential chromophore for age-related cataractogenesis. We found that Xan produces singlet oxygen (psi delta = 0.17 in CD3OD) with the same efficiency as the lenticular chromophore N-formyl kynurenine and quenches singlet oxygen at a rate similar (2.1 x 10(7); CD3OD) to other tryptophan metabolites found in the eye. As the mechanisms of induction of cataracts may also involve redox reactions, the interactions of hydrated electrons (e(aq)-), the azide radical (N3*) and hydroxyl radical (OH*) with Xan were studied using the technique of pulse radiolysis. The reaction rate constants of e(aq)-, N3* and OH* with Xan were found to be of the same order of magnitude as other tryptophan metabolites. The rate constant for reaction of Xan with e(aq)- solvated electrons was found to be diffusion controlled (k = 1.43 x 10(10) M(-1) s(-1); the reaction with N3* was very fast (k = 4.0 x 10(9) M(-1) s(-1)); and with OH* was also near diffusion controlled (k = 1.0 x 10(10) M(-1) s(-1)). Superoxide O2*- production by irradiated Xan in methanol was detected by electron paramagnetic resonance and substantiated by determining that the enhanced rate of oxygen consumption of Xan irradiated in the presence of furfuryl alcohol was lowered by superoxide dismutase.  相似文献   

15.
A slight modification of the Gabriel synthesis of primary amines is suggested on the basis of the observed and reported values of rate constants for the alkaline and acid hydrolyses of phthalimide, phthalamic acid, benzamide, and their N-substituted derivatives. The suggested procedure requires shorter reactions time and milder acid-base reaction conditions compared with the conventional acid-base hydrolysis in the Gabriel synthesis. A slight modification in the Ing-Manske procedure is also suggested. Pseudo-first-order rate constants, k(obs), for hydrolysis of N-phthaloylglycine, NPG, decrease from 24.1 x 10(-3) to 7.72 x 10(-3) and 6.12 x 10(-3) s(-1) with increasing acetonitrile and 1,4-dioxan contents, respectively, from 2 to 50% v/v (all the percentages given in the paper are vol %), while increasing the organic cosolvents content from 50 to 80% increases k(obs) from 7.72 x 10(-3) to 19.7 x 10(-3) s(-1) for acetonitrile and from 6.12 x 10(-3) to 52.8 x 10(-3) s(-1) for 1,4-dioxan, in aqueous organic solvents containing 0.004 M NaOH at 35 degrees C. The rate constants for NPG hydrolysis decrease from 2.11 x 10(-2) to 1.19 x 10(-4) s(-1) with increasing MeOH content from 2 to 84%, in aqueous organic solvents containing 2% MeCN and 0.004 M NaOH at 35 degrees C.  相似文献   

16.
Piperidine and pyrrolidine nitroxides, such as 2,2,6,6-tetramethylpiperidinoxyl (TPO) and 3-carbamoylproxyl (3-CP), respectively, are cell-permeable stable radicals, which effectively protect cells, tissues, isolated organs, and laboratory animals from radical-induced damage. The kinetics and mechanism of their reactions with .OH, superoxide, and carbon-centered radicals have been extensively studied, but not with .NO2, although the latter is a key intermediate in cellular nitrosative stress. In this research, .NO2 was generated by pulse radiolysis, and its reactions with TPO, 4-OH-TPO, 4-oxo-TPO, and 3-CP were studied by fast kinetic spectroscopy, either directly or by using ferrocyanide or 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate), which effectively scavenge the product of this reaction, the oxoammonium cation. The rate constants for the reactions of .NO2 with these nitroxides were determined to be (7-8) x 10(8) M(-)(1) s(-)(1), independent of the pH over the range 3.9-10.2. These are among the highest rate constants measured for .NO2 and are close to that of the reaction of .NO2 with .NO, that is, 1.1 x 10(9) M(-1) s(-1). The hydroxylamines TPO-H and 4-OH-TPO-H are less reactive toward .NO2, and an upper limit for the rate constant for these reactions was estimated to be 1 x 10(5) M(-1) s(-1). The kinetics results demonstrate that the reaction of nitroxides with .NO2 proceeds via an inner-sphere electron-transfer mechanism to form the respective oxoammonium cation, which is reduced back to the nitroxide through the oxidation of nitrite to .NO2. Hence, the nitroxide slows down the decomposition of .NO2 into nitrite and nitrate and could serve as a reservoir of .NO2 unless the respective oxoammonium is rapidly scavenged by other reductant. This mechanism can contribute toward the protective effect of nitroxides against reactive nitrogen-derived species, although the oxoammonium cations themselves might oxidize essential cellular targets if they are not scavenged by common biological reductants, such as thiols.  相似文献   

17.
Theoretical investigations are carried out on the reaction mechanism of the reactions of CF3OCHF2 (HFOC-125) with the OH radials and Cl atoms, as well as the heats of formation of CF3OCHF2 and CF3OCF2. The electronic structure information on the potential energy surface for each reaction is obtained at the B3LYP/6-311G(d,p) level, and energetic information is further refined by G3(MP2) theory. The direct dynamics calculation of the hydrogen abstraction reactions are also performed at the G3(MP2)//B3LYP/ 6-311G(d,p) level. The classical energy profile is corrected by interpolated single-point energies (ISPE) approach, incorporating the small-curvature tunnelling effect (SCT) calculated by the variational transition-state theory (VTST). The rate constants are in good agreement with the experimental data and are found to be k1 = 4.95 x 10(-30)T(5.40)exp(-347/T) and k2 = 1.86 x 10(-23)T(3.43)exp(-1579/T) cm3 molecule(-1)s(-1) over the temperature range 200-2000 K. The rate constants at 298 K for these two reactions are 3.38 x 10(-16) and 2.80 x 10(-17) cm3 molecule(-1)s(-1), respectively. Using group-balanced isodesmic reactions as working chemical reactions, the standard enthalpies of formation for CF3OCHF2 and CF3OCF2 are -312.3 +/- 1.0 and -257.3 +/- 1.0 kcalmol(-1), respectively, evaluated by G3(MP2) theory based on the B3LYP/6-311G(d,p) geometries. The theoretical studies provide rate constants of the title reactions and the enthalpies of the species, which are important parameters in determining the atmospheric lifetime and the feasible pathways for the loss of HFOC-125.  相似文献   

18.
The kinetics of the reactions of OH with acetic acid, acetic acid-d3 and acetic acid-d4 were studied from 2 to 5 Torr and 263-373 K using a discharge flow system with resonance fluorescence detection of the OH radical. The measured rate constants at 300 K for the reaction of OH with acetic acid and acetic acid-d4 (CD3C(O)OD) were (7.42+/-0.12)x10(-13) and (1.09+/-0.18)x10(-13) cm3 molecule-1 s-1 respectively, and the rate constant for the reaction of OH with acetic acid-d3 (CD3C(O)OH) was (7.79+/-0.16)x10(-13) cm3 molecule-1 s-1. These results suggest that the primary mechanism for this reaction involves abstraction of the acidic hydrogen. Theoretical calculations of the kinetic isotope effect as a function of temperature are in good agreement with the experimental measurements using a mechanism involving the abstraction of the acidic hydrogen through a hydrogen-bonded complex. The rate constants for the OH+acetic acid and OH+acetic acid-d4 reactions display a negative temperature dependence described by the Arrhenius equations kH(T)=(2.52+/-1.22)x10(-14) exp((1010+/-150)/T) and kD(T)=(4.62+/-1.33)x10(-16) exp((1640+/-160)/T) cm3 molecule-1 s-1 for acetic acid and acetic acid-d4, respectively, consistent with recent measurements that suggest that the lifetime of acetic acid at the low temperatures of the upper troposphere is shorter than previously believed.  相似文献   

19.
The tetraazamacrocyclic ligand TRITA(4-) is intermediate in size between the widely studied and medically used 12-membered DOTA(4-) and the 14-membered TETA(4-). The kinetic inertness of GdTRITA(-) was characterized by the rates of exchange reactions with Zn(2+) and Eu(3+). In the Zn(2+) exchange, a second order [H(+)] dependence was found for the pseudo-first-order rate constant (k(0)=(4.2 +/- 0.5) x 10(-7) s(-1); k'=(3.5 +/- 0.3) x 10(-1) M(-1)s(-1), k" =(1.4 +/- 0.4) x 10(3) M(-2)s(-1)). In the Eu(3+) exchange, at pH <5 the rate decreases with increasing concentration of the exchanging ion, which can be accounted for by the transitional formation of dinuclear GdTRITAEu(2+) species. At physiological pH, the kinetic inertness of GdTRITA(-) is considerably lower than that of GdDOTA(-)(t(1/2)= 444 h (25 degrees C) vs. 3.8 x 10(5) h (37 degrees C), respectively). However, GdTRITA(-) is still kinetically more inert than GdDTPA(2-), the most commonly used MRI contrast agent (t(1/2)= 127 h). The formation reactions of LnTRITA(-) complexes (Ln = Ce, Gd and Yb) proceed via the rapid formation of a diprotonated intermediate and its subsequent deprotonation and rearrangement in a slow, OH(-) catalyzed process. The stability of the LnH(2)TRITA* intermediates (log K(LnH2L*)= 3.1-3.9) is lower than that of the DOTA-analogues. The rate constants of the OH(-) catalyzed step increase with decreasing lanthanide ion size, and are about twice as high as for DOTA-complexes.  相似文献   

20.
Reactions of alpha-hydroxyalkyl radicals with 3,5-pyridinedicarboxylic acid (3,5-PDCA) and nicotinic acid (NA) were studied at appropriate pHs in aqueous solutions by pulse radiolysis technique. At pH 1, CH(3)C*HOH and *CH(2)OH radicals were found to react with 3,5-PDCA by rate constants of 2.2 x 10(9) and 5.1 x 10(8) dm(3) mol(-1) s(-1), respectively, giving radical adduct species. The adduct species formed in the reaction of CH(3)C*HOH radicals with 3,5-PDCA underwent unimolecular decay (k = 9.8 x 10(4) s(-1)) giving pyridinyl radicals. Reaction of (CH(3))(2)C*OH, CH(3)C*HOH, and *CH(2)OH radicals with NA at pH 3.3 gave the adduct species which subsequently decayed to the pyridinyl radicals. At pH 1, wherein NA is present in the protonated form, (CH(3))(2)C*OH radicals directly transfer electrons to NA, whereas CH(3)C*HOH and *CH(2)OH radicals react with higher rate constants compared with those at pH 3.3, initially giving the adduct species which subsequently undergo elimination reaction giving pyridinyl radicals. Reactions of alpha-hydroxyalkyl radicals with 3,5-pyridinedicarboxylic acid and nicotinic acid are found to proceed by an addition-elimination pathway that provides one of the few examples of organic inner sphere electron-transfer reactions. Rate constant for the addition reaction as well as rate of elimination varies with the reduction potential of alpha-hydroxyalkyl radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号