首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 696 毫秒
1.
Summary The ribosomal 50S and 30S subunit proteins (r-proteins) ofThermus aquaticus have, for the first time, been characterized by size exclusion chromatography (SEC) and by reversed phase high performance liquid chromatography (RPC). To ensure that the best resolution in the RPC was obtained. the elution conditions, such as gradient time, flow rate, temperature, ionic strength of the eluent and the type of stationary phase were optimized. Correlation between experimentally found retention times and those predicted by DryLab G was better than 0.7% over 30 peaks. Protein fractions from RPC runs were desalted and processed by gel electrophoresis so that the ribosomal proteins could be identified by their position on SDS-polyacrylamide gels. The enhanced speed and quality of separation which has been achieved in this study is expected to bring advantaces in experimental work with ribosomal proteins as well as with other biopolymers. In our case the high resolution technique provides a basis for the preparation of a collection of individual ribosomal protein components for future rRNA-protein interaction studies.  相似文献   

2.
Three new polymeric chiral stationary phases were synthesized based on (1S,2S)-1,2-bis(2,4,6-trimethylphenyl)ethylenediamine, (1S,2S)-1,2-bis(2-chlorophenyl)ethylenediamine, and (1S,2S)-1,2-di-1-naphthylethylenediamine via a simple free-radical-initiated polymerization in solution. These monomers are structurally related to (1S,2S)-1,2-diphenylethylenediamine which is the chiral monomer used for the commercial P-CAP-DP polymeric chiral stationary phase (CSP). The performance of these three new chiral stationary phases were evaluated in normal phase high-performance liquid chromatography (HPLC) and supercritical fluid chromatography and the results were compared with those of the P-CAP-DP column. All three new phases showed enantioselectivity for a large number of racemates with a variety of functional groups, including amines, amides, alcohols, amino acids, esters, imines, thiols, and sulfoxides. In normal phase, 68 compounds were separated with 28 baseline separations (Rs ≥ 1.5) and in SFC, 65 compounds were separated with 24 baseline separations. In total 72 out of 100 racemates were separated by these CSPs with 37 baseline separations. Complimentary separation capabilities were observed for many analytes. The new polymeric CSPs showed similar or better enantioselectivities compared with the commercial column in both HPLC and SFC. However, faster separations were achieved on the new stationary phases. Also, it was shown that these polymeric stationary phases have good sample loading capacities while maintaining enantioselectivity.  相似文献   

3.
Stereoselective analytical HPLC separations have been developed for a series of biologically active chiral 2-pyrazolines (1-22) to be used in monitoring their resolution reactions or to custom semipreparative HPLC separations prior to biological assessment of both enantiomers. Polysaccharide-based chiral stationary phases (CSPs), namely, Lux amylose-2 and cellulose-2, have been used. Both normal (n-hexane/ethanol) and polar organic (ethanol, methanol, acetonitrile, or mixtures thereof) elution modes were very beneficial for the achievement of baseline separations. The impact of various chemical moieties embedded in the structures of 2-pyrazolines 1-22 and the adopted stationary phases on chiral recognition has been investigated. A case of reversed order of elution following alterations in either stationary phase or elution mode has been observed. Our findings recommend that normal elution mode can be used for optimizing semipreparative HPLC methods whereas polar organic mobile phases (such as acetonitrile and ethanol) are more suited to stereoselective reactions monitoring, routine quality control work, or for pharmacological and toxicological assays. These results settle the implementation of polysaccharide-based CSPs using different elution modes and declare the practicality of such CSPs in stereoselective HPLC.  相似文献   

4.
Summary A new HPLC stationary phase was synthesized by thein situ covalent immobilization of human serum albumin (HSA). The protein was immobilized on a commerically available diol column which had been activated with 1,1-carbonyldiimidazole. Initial chromatographic studies show that this phase can be used for chiral separations of enantiomeric solutes and that these separations may reflectin vitro binding to the HSA. The effects of mobile phase composition and temperature on the stereochemical resolutions are reported.  相似文献   

5.
Summary During the past decade, HPLC has developed into a powerful new technique for the analysis of complex mixtures of biological macromolecules. Through the use of microparticulate supports of vastly improved mechanican strength, superior stationary phase chemistry, and advanced instrumentation, it is now possible to separate biological macromolecules more than 10 times faster and with greater resolution than in the classical SEC, IEC, HIC, bioaffinity, and hydroxyapetite chromatography columns. Additionally, the introduction of new separation modes such as RPC and metal chelate make it possible to carry out separations that were not possible with the classical gel-type media. It is anticipated that 1) expanded use of non-porous media, 2) development of new stationary phases for carbohydrates, 3) greater throughput and resolution in preparative separations, and 4) better understanding of retention mechanisms are a few of the areas of macromolecular separations in which advances can be expected in the next few years.  相似文献   

6.

The Carotenoid S is a new C30 bonded silica stationary phase, intended for reversed-phase chromatographic applications, which is more hydrophobic and consequently shows stronger retention in comparison to conventionally used C18 stationary phases. We compared the non-polar selectivities of the columns for homologous alkylbenzenes in acetonitrile—water and methanol–water mobile phases and polar reversed-phase selectivities employing the interaction indices and the Linear Free Energy Relationship models. Further, we investigated possibilities of separations of structurally closely related compounds in the groups of phenolic acids, flavones, phthalic acids and related compounds and of acylglycerols on the new C30 column and with different types of columns for reversed-phase chromatography, including shorter alkyl C4, C8, C18 and phenyl bonded stationary phases. The C30 column has in some aspects properties similar to the non-endcapped Nova-Pak column for separation of some acylglycerols with equal equivalent carbon numbers, but enables separations of longer chain triacylglycerols in a single gradient run.

  相似文献   

7.
Fast and efficient separations of chiral stereolabile compounds were obtained at very low temperature on a π-acid chiral stationary phase (R,R-DACH-DNB) using carbon dioxide-based mobile phases containing alcoholic polar modifiers. Furthermore, efficient separations of the newly discovered spherical carbon cluster buckminsterfullerene (C60) and the related higher fullerenes (C70, etc.) have been performed on the same stationary phase using eluents based on either n-hexane or carbon dioxide.  相似文献   

8.
Species of the genus Achillea have been used in traditional folk medicine for centuries. In Europe taxa of the Achillea millefolium group are widely spread, their correct taxonomic differentiation by morphological and anatomical characteristics encounters some difficulties. Several species of the polyploid A. millefolium group however, can be characterised by their distinct sesquiterpene pattern. Analysis is usually performed by LC using conventional RP stationary phases. Likewise, it has been proven that non-porous RP stationary phases are an excellent alternative for sensitive and more rapid separations of plant extracts. In the present work a Kovasil MS-C18 1.5 μm non-porous packing was used with an acetonitrile-water gradient for the analysis of Achillea flower extracts. Detection and identification of the respective sesquiterpenes has been achieved by diode array detection and LC coupled APCI+ and ESI+ mass spectrometry.  相似文献   

9.
Summary The enantiomeric resolution of seven racemic sulphoxides on chiral stationary phases has been investigated by gas and liquid chromatography. In gas chromatography the separations were performed on octakis-(2,6-di-O-pentyl-3-O-butyryl)-γ-cyclodextrin (FS Lipodex-E) and heptakis-(2,6-di-O-methyl-3-O-pentyl)-β-cyclodextrin (DMP-β-CD). Both stationary phases were suitable for separation of the enantiomers of the sulphoxides. With one exception for each series all racemetes could be resolved on both stationary phases; FS Lipodex-E was more enantioselective than DMP-β-CD, whereas the latter seemed more generally applicable. Liquid chromatographic separations with Chiralcel-OB as stationary phase were significantly improved by optimization of mobile phase composition and temperature. Resolution factors up to Rs=6 were achieved indicating that the improved separations could now be easily used for preparative purposes.  相似文献   

10.
Abstract

Liquid crystals have not yet been used as stationary phases in High Performance Liquid Chromatography. This is surprising since Gas Chromatography has demonstrated some remarkable separations, many of which are not possible with normal stationary phases, that have been achieved where liquid crystals have been employed as the stationary phase. The objective of the work reported here was to evaluate the chromatographic properties of several cholesteric liquid crystals as stationary phases in HPLC. Included in this study was an investigation of the feasibility of bonding a cholesteric moiety to a solid support for use in HPLC. The columns showed a dramatic increase in capacity factor for steroid molecules as the temperature of the column was increased.  相似文献   

11.
Summary The proteins of the large ribosomal subunit fromEscherichia coli have been separated by size-exclusion, ion-exchange and reversed-phase high-performance-liquid chromatography (HPLC) using various buffer systems. The biological activity of the isolated proteins was tested via their ability to assemble into active 50S subunits (total reconstitution). The activity of the reconstituted subunits was measured with poly(U)-dependent poly-(Phe) synthesis. Reversed-phase HPLC techniques yielded active proteins (80–100%) by application of 2-propanol or acetonitrile. Proteins prepared by size-exclusion chromatography employing ammonium acetate as buffer also gave highly active proteins (70%). On the other hand, separation of the proteins on ion-exchange columns, using urea containing buffers, resulted in reduced activity (up to 50%).  相似文献   

12.
The selectivity of high performance liquid chromatography (HPLC) separations is increased using a parallel column configuration. In this system, an injected sample is first split between two HPLC columns that provide complementary separations. The effluent from the two columns is recombined prior to detection with a single multiwavelength absorbance detector. Complementary stationary phases are used so that each chemical component produces a detected concentration profile consisting of two peaks. A parallel column configuration, when coupled with multivariate detection, provides increased chemical selectivity relative to a single column configuration with the same multivariate detection. This enhanced selectivity is achieved by doubling the number of peaks in the chromatographic dimension while keeping the run time constant. Unlike traditional single column separation methodology, the parallel column system sacrifices chromatographic resolution while actually increasing the chemical selectivity, thus allowing chemometric data analysis methods to mathematically resolve the multivariate chromatographic data. The parallel column system can be used to reduce analysis times for partially resolved peaks and simplify initial method development as well as provide a more robust methodology if and when subsequent changes in the sample matrix occur (such as when new interferences show up in subsequent samples). Here, a mixture of common aromatic compounds were separated with this system and analyzed using the generalized rank annihilation method (GRAM). Analytes that were significantly overlapped on both stationary phases applied, ZirChrom PBD and CARB phases, when used in traditional single column format, were successfully quantified with a R.S.D.% of typically 2% when the same stationary phases were used in the parallel column format. These results indicate that a parallel column system should substantially improve the chemical selectivity and quantitative precision of the analysis relative to a single-column instrument.  相似文献   

13.
Chiral-modified silica-based monoliths have become well-established stationary phases for both high performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The silica-based monoliths were fabricated either in situ in the capillaries for nano-HPLC and CEC or in a mould for “conventional” HPLC. The present review summarizes the chiral modification of silica monoliths and the recent development in the field of enantioselective separations by nano-HPLC and CEC.  相似文献   

14.
Two new synthetic polymeric chiral stationary phases (CSPs) based on trans-(1S,2S)-cyclohexanedicarboxylic acid bis-4-vinylphenylamide (I) and trans-N,N′-(1R,2R)-cyclohexanediyl-bis-4-ethenylbenzamide (II) monomers were prepared and evaluated by normal phase high performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). A variety of chiral compounds were separated on these two new CSPs. The different orientation of the amide groups in the two CSPs resulted in a striking difference in the enantioselectivity properties of these two CSPs. Their differences in enantioselectivity with HPLC and SFC were compared.  相似文献   

15.
Five retinoids, 13-cis-retinoic acid, 9-cis-retinoic acid, all-trans-retinoic acid, all-trans-retinol and 13-cis-retinal were isocratically separated from four different reversed phase high performance liquid chromatographic stationary phases. By taking advantage of the different retention mechanisms, present between the stationary phases and the analytes, the retinoids were separated with different elution orders using the same mobile phase composition. Two of the stationary phases appeared to have more possibilities to interact with the analytes than the usual hydrophobic interactions. The stationary phase with embedded polar groups showed hydrogen bonding properties and the calix[4]arene based stationary phase showed possibilities to form inclusion complexes with the analytes. These additional interactions appeared to benefit the separations of the analytes. This publication shows the benefits by isocratically separate retinoids employing other stationary phases than the conventional C18 stationary phase.  相似文献   

16.
We have developed an iterative procedure for predicting the retention times of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes during separations by temperature-programmed gas chromatography. The procedure is based on estimates of two thermodynamic properties for each analyte (the differences in enthalpy and entropy associated with movements between the stationary and mobile phases) derived from data acquired experimentally in separations under isothermal conditions at temperatures spanning the range covered by the temperature programs in ten-degree increments. The columns used for this purpose were capillary columns containing polydimethylsiloxane-based stationary phases with three degrees of phenyl substitution (0%, 5%, and 50%). Predicted values were mostly within 1% of experimentally determined values, implying that the method is stable and precise. Figure Predicted values were mostly within 1 % of experimentally determined values, thus implying that the method is stable and precise  相似文献   

17.
Direct reversed-phase high-performance liquid chromatographic methods were developed for the separation of enantiomers of eighteen unnatural β-amino acids, including several β-3-homo-amino acids. The direct separations of the underivatized analytes were performed on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Chirobiotic T and T2), teicoplanin aglycone (Chirobiotic TAG), vancomycin (Chirobiotic V and V2), and ristocetin A (Chirobiotic R) as chiral selectors. The effects of the organic modifier, mobile phase composition and pH on the separations were investigated. A comparison of the separation performances of the macrocyclic glycopeptide stationary phases revealed that the Chirobiotic T2 column exhibited better selectivity than the Chirobiotic T column for the separation of β-3-homo-amino acid enantiomers; vancomycin or ristocetin A exhibited lower selectivity. The elution sequence was determined in some cases: the S enantiomers eluted before the R enantiomers, with the exception of the Chirobiotic R column, where the elution sequence R < S was observed.  相似文献   

18.
Reversed-phase liquid chromatography (RPLC) is very widely used for the separation and characterization of proteins and peptides. A novel type of highly stable silica-based stationary phase has been developed for protein separations. A dense monolayer of dimethyl-(chloromethyl)phenylethyl)-chlorosilane (DM-CMPES) on the surface of silica is "hyper-crosslinked" with a polyfunctional aromatic crosslinker through Friedel-Crafts chemistry resulting in stationary phases with extraordinary stability in acidic media. Elemental analysis data confirm the high degree of cross-linking among the surface groups. The hyper-crosslinked phases are extremely stable under highly acidic mobile phase conditions even at a temperature as high as 150 degrees C. A wide-pore (300 A) material made in this way is used here to separate proteins by a reversed-phase mechanism and compared to a commercially available "sterically protected" C18 phase. For small molecules, including neutral and basic compounds, these crosslinked phases give comparable peak shape and efficiency to the commercial phase. Our results show that no pore blockage takes place as commonly afflicts polymer coated phases. In consequence, protein separations on the new phases are acceptable. Using strong ion-pairing reagents, such as HPF6, improves the separation efficiency. Compared to the commercial phases, these new phases can be used at lower pHs and much higher temperatures thereby enabling much faster separations which is the primary focus of this work. Better efficiency for proteins was obtained at high temperature. However, at conventional linear velocities the instability of proteins at high temperature becomes a problem which establishes an upper temperature limit. Uses of a narrowbore column and high flow rates both solves this problem by reducing the time that proteins spend on the hot column and, of course, speeds up the separation of the protein mixture. Finally, an ultrafast gradient (<1 min) protein separation was obtained by utilizing the high temperature and thus high linear velocities afforded by the extreme stability of these new phases. The phases are stable even after 50h of exposure to 0.1% TFA at 120 degrees C. This paper is dedicated to the memory of Csaba Horvath whose work in high temperature HPLC inspired the development of the stationary phases described here.  相似文献   

19.
The use of cyclodextrins (CDs) in HPLC as mobile phase additives provides a flexible alternative for the separation of chemically related compounds because these separations can be performed on conventional columns and are economically advantageous over the use of chiral stationary phases. The present paper describes the influence of the presence of β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HPβ-CD) on the separation of the β-carboline alkaloids norharmane, harmane and harmine. The nature of the stationary phase (reverse phases C1 and C18) affects the chromatographic separations and also the stability of the inclusion complexes that are developed. The changes in the proportion of the organic solvents at constant concentration of CDs (3 mM for β-CD and 15 mM for HPβ-CD) modify the retention factors (k′) for all alkaloids studied. The nature of the organic solvent in the mobile phase also changes the chromatographic parameters. The logarithm of the capacity factor (k′) is linearly increased with the proportion of water in the hydro-organic mobile phase (ethanolic or methanolic) but the slopes obtained vary depending on the CD added to the mobile phase. The role of competitive equilibria, i.e., chromatographic distribution and inclusion complexes formation is discussed. This paper was presented at XIIIth International Cyclodextrin Symposium. Torino, Italy, May, 14–17, 2006  相似文献   

20.
Summary The difect and indirect separation of enantiomers of secondary amino acids was studied by high-performance liquid chromatography. Direct separation was by using a macrocyclic glycopeptide, teicoplanin or ristocetin A, as chiral stationary phase. Indirect separation was via pre-column derivatization with (S)-N-(4-nitrophenoxycarbonyl)phenylalanine methoxyethyl ester [(S)-NIFE] as a new chiral derivatizing agent. Both direct and indirect separations were performed by means of reversed-phase HPLC. Conditions for separations were optimized. The methods described offer good enantioselectivity for synthetic chiral imino acids. Presented at Balaton Symposium '01 on High-Performance Separation Methods, Siófok, Hungary, September 2–4, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号