首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, speech-recognition performance was measured in four hearing-impaired subjects and twelve normal hearers. The normal hearers were divided into four groups of three subjects each. Speech-recognition testing for the normal hearers was accomplished in a background of spectrally shaped noise in which the noise was shaped to produce masked thresholds identical to the quiet thresholds of one of the hearing-impaired subjects. The question addressed in this study is whether normal hearers with a hearing loss simulated through a shaped masking noise demonstrate speech-recognition difficulties similar to those of listeners with actual hearing impairment. Regarding overall percent-correct scores, the results indicated that two of the four hearing-impaired subjects performed better than their corresponding subgroup of noise-masked normal hearers, whereas the other two impaired listeners performed like the noise-masked normal listeners. A gross analysis of the types of errors made suggested that subjects with actual and simulated losses frequently made different types of errors.  相似文献   

2.
Frequency resolution (viz., masking by low-pass-filtered noise and broadband noise) and temporal resolution (viz., masking by interrupted noise) were compared with hearing thresholds and acoustic reflex thresholds for four normally hearing and 13 cochlearly impaired subjects. Two models, one for frequency resolution (model I) and one for temporal resolution (model II), were introduced, and these provided a means of predicting individual frequency and temporal resolution from hearing thresholds for both normal-hearing and hearing-impaired listeners. Model I is based on the assumption that the upward spread of masking increases in cochlearly impaired hearing with an amount proportional to the hearing threshold in dB HL. Model II is based on the assumption that the poststimulatory masked thresholds return to the level of the hearing threshold within a duration of 200 ms, independent of the level of the masker and the amount of cochlear hearing loss. Model parameters were determined from results from other studies. Although some discrepancies between measured and predicted values were observed, the model predictions generally agree with measurements. Thus, to a first-order approximation, it seems possible to predict individual frequency and temporal resolution of cochlearly hearing-impaired listeners solely on the basis of their hearing thresholds.  相似文献   

3.
Speech-reception thresholds (SRT) were measured for 17 normal-hearing and 17 hearing-impaired listeners in conditions simulating free-field situations with between one and six interfering talkers. The stimuli, speech and noise with identical long-term average spectra, were recorded with a KEMAR manikin in an anechoic room and presented to the subjects through headphones. The noise was modulated using the envelope fluctuations of the speech. Several conditions were simulated with the speaker always in front of the listener and the maskers either also in front, or positioned in a symmetrical or asymmetrical configuration around the listener. Results show that the hearing impaired have significantly poorer performance than the normal hearing in all conditions. The mean SRT differences between the groups range from 4.2-10 dB. It appears that the modulations in the masker act as an important cue for the normal-hearing listeners, who experience up to 5-dB release from masking, while being hardly beneficial for the hearing impaired listeners. The gain occurring when maskers are moved from the frontal position to positions around the listener varies from 1.5 to 8 dB for the normal hearing, and from 1 to 6.5 dB for the hearing impaired. It depends strongly on the number of maskers and their positions, but less on hearing impairment. The difference between the SRTs for binaural and best-ear listening (the "cocktail party effect") is approximately 3 dB in all conditions for both the normal-hearing and the hearing-impaired listeners.  相似文献   

4.
Reports using a variety of psychophysical tasks indicate that pitch perception by hearing-impaired listeners may be abnormal, contributing to difficulties in understanding speech and enjoying music. Pitches of complex sounds may be weaker and more indistinct in the presence of cochlear damage, especially when frequency regions are affected that form the strongest basis for pitch perception in normal-hearing listeners. In this study, the strength of the complex pitch generated by iterated rippled noise was assessed in normal-hearing and hearing-impaired listeners. Pitch strength was measured for broadband noises with spectral ripples generated by iteratively delaying a copy of a given noise and adding it back into the original. Octave-band-pass versions of these noises also were evaluated to assess frequency dominance regions for rippled-noise pitch. Hearing-impaired listeners demonstrated consistently weaker pitches in response to the rippled noises relative to pitch strength in normal-hearing listeners. However, in most cases, the frequency regions of pitch dominance, i.e., strongest pitch, were similar to those observed in normal-hearing listeners. Except where there exists a substantial sensitivity loss, contributions from normal pitch dominance regions associated with the strongest pitches may not be directly related to impaired spectral processing. It is suggested that the reduced strength of rippled-noise pitch in listeners with hearing loss results from impaired frequency resolution and possibly an associated deficit in temporal processing.  相似文献   

5.
Eight normal listeners and eight listeners with sensorineural hearing losses were compared on a gap-detection task and on a speech perception task. The minimum detectable gap (71% correct) was determined as a function of noise level, and a time constant was computed from these data for each listener. The time constants of the hearing-impaired listeners were significantly longer than those of the normal listeners. The speech consisted of sentences that were mixed with two levels of noise and subjected to two kinds of reverberation (real or simulated). The speech thresholds (minimum signal-to-noise ratio for 50% correct) were significantly higher for the hearing-impaired listeners than for the normal listeners for both kinds of reverberation. The longer reverberation times produced significantly higher thresholds than the shorter times. The time constant was significantly correlated with all the speech threshold measures (r = -0.58 to -0.74) and a measure of hearing threshold loss also correlated significantly with all the speech thresholds (r = 0.53 to 0.95). A principal components analysis yielded two factors that accounted for the intercorrelations. The factor loadings for the time constant were similar to those on the speech thresholds for real reverberation and the loadings for hearing loss were similar to those of the thresholds for simulated reverberation.  相似文献   

6.
The speech-reception threshold (SRT) for sentences presented in a fluctuating interfering background sound of 80 dBA SPL is measured for 20 normal-hearing listeners and 20 listeners with sensorineural hearing impairment. The interfering sounds range from steady-state noise, via modulated noise, to a single competing voice. Two voices are used, one male and one female, and the spectrum of the masker is shaped according to these voices. For both voices, the SRT is measured as well in noise spectrally shaped according to the target voice as shaped according to the other voice. The results show that, for normal-hearing listeners, the SRT for sentences in modulated noise is 4-6 dB lower than for steady-state noise; for sentences masked by a competing voice, this difference is 6-8 dB. For listeners with moderate sensorineural hearing loss, elevated thresholds are obtained without an appreciable effect of masker fluctuations. The implications of these results for estimating a hearing handicap in everyday conditions are discussed. By using the articulation index (AI), it is shown that hearing-impaired individuals perform poorer than suggested by the loss of audibility for some parts of the speech signal. Finally, three mechanisms are discussed that contribute to the absence of unmasking by masker fluctuations in hearing-impaired listeners. The low sensation level at which the impaired listeners receive the masker seems a major determinant. The second and third factors are: reduced temporal resolution and a reduction in comodulation masking release, respectively.  相似文献   

7.
Three experiments were conducted to determine whether listeners with a sensorineural hearing loss exhibited greater than normal amounts of masking at frequencies above the frequency of the masker. Excess masking was defined as the difference (in dB) between the masked thresholds actually obtained from a hearing-impaired listener and the expected thresholds calculated for the same individual. The expected thresholds were the power sum of the listener's thresholds in quiet and the average masked thresholds obtained from a group of normal-hearing subjects at the test frequency. Hearing-impaired listeners, with thresholds in quiet ranging from approximately 35-70 dB SPL (at test frequencies between 500-3000 Hz), displayed approximately 12-15 dB of maximum excess masking. The maximum amount of excess masking occurred in the region where the threshold in quiet of the hearing-impaired listener and the average normal masked threshold were equal. These findings indicate that listeners with a sensorineural hearing loss display one form of reduced frequency selectivity (i.e., abnormal upward spread of masking) even when their thresholds in quiet are taken into account.  相似文献   

8.
Frequency resolution and three tasks of frequency discrimination were measured at 500 and 4000 Hz in 12 normal and 12 hearing-impaired listeners. A three-interval, two-alternative forced-choice procedure was used. Frequency resolution was measured with an abbreviated psychoacoustical tuning curve. Frequency discrimination was measured for (1) a fixed-frequency standard and target, (2) a fixed-frequency standard and a frequency-transition target, and (3) frequency-transition standard and a frequency-transition target. The 50-ms frequency transitions had the same final frequency as the standards, but the initial frequency was lowered to obtain about 79% discrimination performance. There was a strong relationship between poor frequency resolution and elevated pure-tone thresholds, but only a very weak relationship between poor frequency discrimination and elevated pure-tone thresholds. Several hearing-impaired listeners had normal discrimination performance together with pure-tone thresholds of 80-90 dB HL. A slight correlation was found between word recognition and frequency discrimination, but a detailed comparison of the phonetic errors and either the frequency-discrimination or frequency-resolution tasks failed to suggest any consistent interdependencies. These results are consistent with previous work that has suggested that frequency resolution and frequency discrimination are independent processes.  相似文献   

9.
Thresholds of ongoing interaural time difference (ITD) were obtained from normal-hearing and hearing-impaired listeners who had high-frequency, sensorineural hearing loss. Several stimuli (a 500-Hz sinusoid, a narrow-band noise centered at 500 Hz, a sinusoidally amplitude-modulated 4000-Hz tone, and a narrow-band noise centered at 4000 Hz) and two criteria [equal sound-pressure level (Eq SPL) and equal sensation level (Eq SL)] for determining the level of stimuli presented to each listener were employed. The ITD thresholds and slopes of the psychometric functions were elevated for hearing-impaired listeners for the two high-frequency stimuli in comparison to: the listener's own low-frequency thresholds; and data obtained from normal-hearing listeners for stimuli presented with Eq SPL interaurally. The two groups of listeners required similar ITDs to reach threshold when stimuli were presented at Eq SLs to each ear. For low-frequency stimuli, the ITD thresholds of the hearing-impaired listener were generally slightly greater than those obtained from the normal-hearing listeners. Whether these stimuli were presented at either Eq SPL or Eq SL did not differentially affect the ITD thresholds across groups.  相似文献   

10.
Upward spreading of masking, measured in terms of absolute masked threshold, is greater in hearing-impaired listeners than in listeners with normal hearing. The purpose of this study was to make further observations on upward-masked thresholds and speech recognition in noise in elderly listeners. Two age groups were used: One group consisted of listeners who were more than 60 years old, and the second group consisted of listeners who were less than 36 years old. Both groups had listeners with normal hearing as well as listeners with mild to moderate sensorineural loss. The masking paradigm consisted of a continuous low-pass-filtered (1000-Hz) noise, which was mixed with the output of a self-tracking, sweep-frequency Bekesy audiometer. Thresholds were measured in quiet and with maskers at 70 and 90 dB SPL. The upward-masked thresholds were similar for young and elderly hearing-impaired listeners. A few elderly listeners had lower upward-masked thresholds compared with the young control group; however, their on-frequency masked thresholds were nearly identical to the control group. A significant correlation was found between upward-masked thresholds and the Speech Perception in Noise (SPIN) test in elderly listeners.  相似文献   

11.
Articulation index (AI) theory was used to evaluate stop-consonant recognition of normal-hearing listeners and listeners with high-frequency hearing loss. From results reported in a companion article [Dubno et al., J. Acoust. Soc. Am. 85, 347-354 (1989)], a transfer function relating the AI to stop-consonant recognition was established, and a frequency importance function was determined for the nine stop-consonant-vowel syllables used as test stimuli. The calculations included the rms and peak levels of the speech that had been measured in 1/3 octave bands; the internal noise was estimated from the thresholds for each subject. The AI model was then used to predict performance for the hearing-impaired listeners. A majority of the AI predictions for the hearing-impaired subjects fell within +/- 2 standard deviations of the normal-hearing listeners' results. However, as observed in previous data, the AI tended to overestimate performance of the hearing-impaired listeners. The accuracy of the predictions decreased with the magnitude of high-frequency hearing loss. Thus, with the exception of performance for listeners with severe high-frequency hearing loss, the results suggest that poorer speech recognition among hearing-impaired listeners results from reduced audibility within critical spectral regions of the speech stimuli.  相似文献   

12.
Two experiments are reported which explore variables that may complicate the interpretation of phoneme boundary data from hearing-impaired listeners. Fourteen synthetic consonant-vowel syllables comprising a/ba-da-ga/ continuum were used as stimuli. The first experiment examined the influence of presentation level and ear of presentation in normal-hearing subjects. Only small differences in the phoneme boundaries and labeling functions were observed between ears and across presentation levels. Thus monaural presentation and relatively high signal level do not appear to be complicating factors in research with hearing-impaired listeners, at least for these stimuli. The second experiment described a test procedure for obtaining phoneme boundaries in some hearing-impaired listeners that controlled for between-subject sources of variation unrelated to hearing impairment and delineated the effects of spectral shaping imposed by the hearing impairment on the labeling functions. Labeling data were obtained from unilaterally hearing-impaired listeners under three test conditions: in the normal ear without any signal distortion; in the normal ear listening through a spectrum shaper that was set to match the subject's suprathreshold audiometric configuration; and in the impaired ear. The reduction in the audibility of the distinctive acoustic/phonetic cues seemed to explain all or part of the effects of the hearing impairment on the labeling functions of some subjects. For many other subjects, however, other forms of distortion in addition to reduced audibility seemed to affect their labeling behavior.  相似文献   

13.
There is limited documentation available on how sensorineurally hearing-impaired listeners use the various sources of phonemic information that are known to be distributed across time in the speech waveform. In this investigation, a group of normally hearing listeners and a group of sensorineurally hearing-impaired listeners (with and without the benefit of amplification) identified various consonant and vowel productions that had been systematically varied in duration. The consonants (presented in a /haCa/ environment) and the vowels (presented in a /bVd/ environment) were truncated in steps to eliminate various segments from the end of the stimulus. The results indicated that normally hearing listeners could extract more phonemic information, especially cues to consonant place, from the earlier occurring portions of the stimulus waveforms than could the hearing-impaired listeners. The use of amplification partially decreased the performance differences between the normally hearing listeners and the unaided hearing-impaired listeners. The results are relevant to current models of normal speech perception that emphasize the need for the listener to make phonemic identifications as quickly as possible.  相似文献   

14.
The Speech Reception Threshold for sentences in stationary noise and in several amplitude-modulated noises was measured for 8 normal-hearing listeners, 29 sensorineural hearing-impaired listeners, and 16 normal-hearing listeners with simulated hearing loss. This approach makes it possible to determine whether the reduced benefit from masker modulations, as often observed for hearing-impaired listeners, is due to a loss of signal audibility, or due to suprathreshold deficits, such as reduced spectral and temporal resolution, which were measured in four separate psychophysical tasks. Results show that the reduced masking release can only partly be accounted for by reduced audibility, and that, when considering suprathreshold deficits, the normal effects associated with a raised presentation level should be taken into account. In this perspective, reduced spectral resolution does not appear to qualify as an actual suprathreshold deficit, while reduced temporal resolution does. Temporal resolution and age are shown to be the main factors governing masking release for speech in modulated noise, accounting for more than half of the intersubject variance. Their influence appears to be related to the processing of mainly the higher stimulus frequencies. Results based on calculations of the Speech Intelligibility Index in modulated noise confirm these conclusions.  相似文献   

15.
The goal of this study was to measure the ability of adult hearing-impaired listeners to discriminate formant frequency for vowels in isolation, syllables, and sentences. Vowel formant discrimination for F1 and F2 for the vowels /I epsilon ae / was measured. Four experimental factors were manipulated including linguistic context (isolated vowels, syllables, and sentences), signal level (70 and 95 dB SPL), formant frequency, and cognitive load. A complex identification task was added to the formant discrimination task only for sentences to assess effects of cognitive load. Results showed significant elevation in formant thresholds as formant frequency and linguistic context increased. Higher signal level also elevated formant thresholds primarily for F2. However, no effect of the additional identification task on the formant discrimination was observed. In comparable conditions, these hearing-impaired listeners had elevated thresholds for formant discrimination compared to young normal-hearing listeners primarily for F2. Altogether, poorer performance for formant discrimination for these adult hearing-impaired listeners was mainly caused by hearing loss rather than cognitive difficulty for tasks implemented in this study.  相似文献   

16.
Speech-understanding difficulties observed in elderly hearing-impaired listeners are predominantly errors in the recognition of consonants, particularly within consonants that share the same manner of articulation. Spectral shape is an important acoustic cue that serves to distinguish such consonants. The present study examined whether individual differences in speech understanding among elderly hearing-impaired listeners could be explained by individual differences in spectral-shape discrimination ability. This study included a group of 20 elderly hearing-impaired listeners, as well as a group of young normal-hearing adults for comparison purposes. All subjects were tested on speech-identification tasks, with natural and computer-synthesized speech stimuli, and on a series of spectral-shape discrimination tasks. As expected, the young normal-hearing adults performed better than the elderly listeners on many of the identification tasks and on all but two discrimination tasks. Regression analyses of the data from the elderly listeners revealed moderate predictive relationships between some of the spectral-shape discrimination thresholds and speech-identification performance. The results indicated that when all stimuli were at least minimally audible, some of the individual differences in the identification of natural and synthetic speech tokens by elderly hearing-impaired listeners were associated with corresponding differences in their spectral-shape discrimination abilities for similar sounds.  相似文献   

17.
The perception of auditory roughness presumably results from imperfect spectral or temporal resolution. Sensorineural hearing loss, by affecting spectral resolution, may therefore alter roughness perception. In this study, normal-hearing and hearing-impaired listeners estimated the roughness of amplitude-modulated tones varying in carrier frequency, modulation rate, and modulation depth. Their judgments were expected to reflect effects of impaired spectral resolution. Instead, their judgments were similar, in most respects, to those of normally-hearing listeners, except at very slow modulation rates. Results suggest that mild-to-moderate sensorineural hearing loss increases the roughness of slowly fluctuating signals.  相似文献   

18.
The goal of this study was to determine the extent to which the difficulty experienced by impaired listeners in understanding noisy speech can be explained on the basis of elevated tone-detection thresholds. Twenty-one impaired ears of 15 subjects, spanning a variety of audiometric configurations with average hearing losses to 75 dB, were tested for reception of consonants in a speech-spectrum noise. Speech level, noise level, and frequency-gain characteristic were varied to generate a range of listening conditions. Results for impaired listeners were compared to those of normal-hearing listeners tested under the same conditions with extra noise added to approximate the impaired listeners' detection thresholds. Results for impaired and normal listeners were also compared on the basis of articulation indices. Consonant recognition by this sample of impaired listeners was generally comparable to that of normal-hearing listeners with similar threshold shifts listening under the same conditions. When listening conditions were equated for articulation index, there was no clear dependence of consonant recognition on average hearing loss. Assuming that the primary consequence of the threshold simulation in normals is loss of audibility (as opposed to suprathreshold discrimination or resolution deficits), it is concluded that the primary source of difficulty in listening in noise for listeners with moderate or milder hearing impairments, aside from the noise itself, is the loss of audibility.  相似文献   

19.
Young normal-hearing listeners, elderly normal-hearing listeners, and elderly hearing-impaired listeners were tested on a variety of phonetic identification tasks. Where identity was cued by stimulus duration, the elderly hearing-impaired listeners evidenced normal identification functions. On a task in which there were multiple cues to vowel identity, performance was also normal. On a/b d g/identification task in which the starting frequency of the second formant was varied, performance was abnormal for both the elderly hearing-impaired listeners and the elderly normal-hearing listeners. We conclude that errors in phonetic identification among elderly hearing-impaired listeners with mild to moderate, sloping hearing impairment do not stem from abnormalities in processing stimulus duration. The results with the /b d g/continuum suggest that one factor underlying errors may be an inability to base identification on dynamic spectral information when relatively static information, which is normally characteristic of a phonetic segment, is unavailable.  相似文献   

20.
This study aimed to clarify the basic auditory and cognitive processes that affect listeners' performance on two spatial listening tasks: sound localization and speech recognition in spatially complex, multi-talker situations. Twenty-three elderly listeners with mild-to-moderate sensorineural hearing impairments were tested on the two spatial listening tasks, a measure of monaural spectral ripple discrimination, a measure of binaural temporal fine structure (TFS) sensitivity, and two (visual) cognitive measures indexing working memory and attention. All auditory test stimuli were spectrally shaped to restore (partial) audibility for each listener on each listening task. Eight younger normal-hearing listeners served as a control group. Data analyses revealed that the chosen auditory and cognitive measures could predict neither sound localization accuracy nor speech recognition when the target and maskers were separated along the front-back dimension. When the competing talkers were separated along the left-right dimension, however, speech recognition performance was significantly correlated with the attentional measure. Furthermore, supplementary analyses indicated additional effects of binaural TFS sensitivity and average low-frequency hearing thresholds. Altogether, these results are in support of the notion that both bottom-up and top-down deficits are responsible for the impaired functioning of elderly hearing-impaired listeners in cocktail party-like situations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号