首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Field aligned current (FAC) distribution in the plasma sheet boundary layers (PSBLs) in the magnetotail is studied statistically by analysing magnetic field data from the Cluster 4-point measurements. The results show that the FAC distribution on the dusk side is not the same as that on the dawn side in the magnetotail. On the each side earthward and tailward, FA C occurrences are different; occurrence and average current density of FA Cs in the northern hemisphere are different from those in the southern hemisphere. This implies that the FACs have dusk-dawn side asymmetry, polarity asymmetry and inter hemisphere difference in the magnetotail. The present results give a good observation evidence for study on the FAC mechanism.  相似文献   

2.
Magneto-acoustic waves generated by fluctuations in the Hall parameter, the electric conductivity and the stream velocity are theoretically investigated in a weakly ionized plasma streaming across a strong external magnetic field and bearing a current flowing perpendicular to both magnetic field and stream velocity. The investigations hold for seeded rare gas plasmas at any degree of seed ionization but are resticted to waves propagating in parallel or antiparallel direction to the current density vector and in parallel or antiparallel direction to the stream velocity vector and to wave lengths which are small in comparsion to the interaction length which occurs as a characteristic wave length. The influence of these waves on the mean current density and the mean Hall field intensity is calculated in case of small amplitudes and low degree of seed ionization up to second order terms. Omitting Ohmic heating the dispersion equation can be solved exactly. A phase shift exists between the fluctuations in gas density and gas velocity. The phase velocity and the amplification rate depend on the wave length. Typical results are represented in a diagram. For both types of waves the phase velocity slightly rises with increasing wave length, while the amplification rate decreases. Waves propagating in opposite direction to the current density vector are amplified, if the electron velocity exceeds a critical value. They reduce the mean current density and the mean Hall field intensity. Waves propagating in opposite direction to the stream velocity vector are also amplified except for very high degrees of seed ionization. The threshold current density is greater than that for the waves of the first type approximately by the Hall parameter as factor. At extremely high degree of seed ionization the phase velocity is directed opposite to the direction occuring at weakly ionized seed. Waves of the second type decrease the mean current density, but increase the mean Hall field intensity.  相似文献   

3.
利用一种结构紧凑的分段表面放电辐射源模块,详细研究了在不同电压、电容、气压实验条件下回路等效电阻、等效电感及放电能量沉积效率的变化规律,利用四分幅相机拍摄获得了不同实验条件下的放电等离子体通道图像,分析讨论了放电等离子体运动对放电能量沉积效率的影响,提出了提高能量放电沉积效率的有效途径。  相似文献   

4.
We perform 2.5-dimensional particle-in-cell simulations to investigate the nonlinear evolution of the lower hybrid drift instability (LHDI) in Harris current sheet. Due to the drift motion of electrons in the electric field of the excited low hybrid drift (LHD) waves, the electrons accumulate at the outer layer, and therefore there is net positive charge at the inner edge of the current sheet. This redistribution of charge can create an electrostatic field along the z direction, which then modifies the motions of the electrons along the y direction by E×B drift. This effect strongly changes the structure of the current sheet.  相似文献   

5.
When a plasma is pushed across a magnetic field by some nonelectromagnetic force, ions and electrons get turned in opposite directions by the magnetic field. This creates an internal current as well as sheaths at the plasma surfaces and results in an electric field which allows the plasma to maintain some, or even most of its initial momentum in the form of E&oarr;×B&oarr; drift. An exact analysis of that process is presented for the internal region of the plasma. The energy provided by the initial push is used, in part, to create some gyrations inside the plasma. When the rest energy density of the plasma exceeds twice the magnetic energy density (or when the Alfven speed is less than c), there will be enough energy to spare for the plasma to continue across the magnetic field at half its initial momentum. Two cases are considered: an impulsive start and a gentle push such as provided by gravity. The amplitude of the resulting internal gyrations becomes small in the second case. The frequencies of the gyrations are those of extraordinary modes of very long spatial wavelength  相似文献   

6.
Results are presented from studies of the formation of current sheets during exciting a current aligned with the X line of the 3D magnetic configuration, in the CS-3D device. Enhancement of the guide field (parallel to the X line) was directly observed for the first time, on the basis of magnetic measurements. After the current sheet formation, the guide field inside the sheet exceeds its initial value, as well as the field outside. It is convincingly demonstrated that an enhancement of the guide field is due to its transportation by plasma flows on the early stage of the sheet formation. The in-plane plasma currents, which produce the excess guide field, are comparable to the total current along the X line that initiates the sheet itself.  相似文献   

7.
The quantum Hall effect in a 2D system with antidots is studied. The antidots are assumed to be large compared with the quantum and relaxation lengths. In this approximation the electric field in the system can be described by the continuity equation. It is found that the electric field in a system without conducting boundaries can be expressed in terms of the same system without a magnetic field. Specific problems of the electric field and current in structures containing one or two antidots and in a circular disk with point contacts are solved. The effective Hall and longitudinal conductivities in a sample containing a large number of randomly distributed antidots are found. In the limit of zero local longitudinal conductivity, the effective longitudinal conductivity also vanishes, and the Hall conductivity is equal to the local conductivity. The corrections to the conductivity tensor which are due to the finiteness of the local conductivity are obtained. Breakdown of the quantum Hall effect in a lattice of antidots is studied on the basis of the assumption that a high current density in narrow locations of the system results in overheating of the electrons. Local and nonlocal models of over-heating are studied. The high-frequency effective conductivity of a system with antidots and the shift of the cyclotron resonance frequency are found.  相似文献   

8.
Zhengzhong Zhang 《中国物理 B》2021,30(11):117305-117305
A magnetic field-controlled spin-current diode is theoretically proposed, which consists of a junction with an interacting quantum dot sandwiched between a pair of nonmagnetic electrodes. By applying a spin bias VS across the junction, a pure spin current can be obtained in a certain gate voltage regime,regardless of whether the Coulomb repulsion energy exists. More interestingly, if we applied an external magnetic field on the quantum dot, we observed a clear asymmetry in the spectrum of spin current IS as a function of spin bias, while the charge current always decays to zero in the Coulomb blockade regime. Such asymmetry in the current profile suggests a spin diode-like behavior with respect to the spin bias, while the net charge through the device is almost zero. Different from the traditional charge current diode, this design can change the polarity direction and rectifying ability by adjusting the external magnetic field, which is very convenient. This device scheme can be compatible with current technologies and has potential applications in spintronics or quantum processing.  相似文献   

9.
《Physics letters. A》2020,384(1):126045
We study the edge-state band and transport property for a HgTe/CdTe quantum well Hall bar under the combined coupling of a transverse electric field and a perpendicular magnetic field. It is demonstrated that a weak magnetic field can protect one of the two edge states, open or enlarge a gap of the other edge state in the Hall bar. However, an appropriate electric field can remove the gap, restoring the quantum spin Hall effect. Using the scattering matrix method, we study the electronic transport of the system. We find that the electric field can not only make the switch from pure spin-up to spin-down current, but also open or close the edge-state channels in a narrow Hall bar under a weak magnetic field, which provides us with a new way to construct a topological insulator-based spin switch and charge switch.  相似文献   

10.
等离子体融断开关磁场Hall渗透机制的模拟研究   总被引:2,自引:2,他引:0       下载免费PDF全文
 利用自行研制的2-1/2维全电磁柱坐标粒子模拟程序对等离子体融断开关磁场渗透机制进行了模拟研究。模拟结果表明在磁场Hall渗透机制特征长度远远小于等离子体离子的无碰撞趋肤深度的条件下,等离子体内部磁场渗透过程主要由电子流体运动的Hall项来控制。对于等离子体空间分布存在较大的密度梯度的物理问题,必须考虑二维空间特性对磁场渗透速度的影响。在磁场已渗透经过的等离子体区域中,等离子体呈现非电中性,离子受静电场的作用会加速运动到达阴极,最终形成真空鞘层。  相似文献   

11.
带状电子束的空间电荷场   总被引:2,自引:2,他引:0       下载免费PDF全文
 利用理论分析和数值计算的方法研究了矩形波导内均匀电流密度的带状电子束模型的空间电荷场,给出了该带状电子束模型的空间电荷场的解析表达式,并研究了空间电荷场随带状电子束的几何参数和物理参数的变化规律。研究表明:在不改变电流密度的前提下,更宽的电子束可以传输更强的束流,而空间电荷场并不随束宽度的增大而增大,但是增加电子束厚度会使空间电荷场显著增强,从而不利于高流强电子束的传输;对于相同电流的带状电子束,保持电子束厚度不变,增大电子束宽度,相应地降低电流密度是降低空间电荷场的一个很好的途径,而保持电子束的宽度不变,增大束厚度,相应地降低电流密度只会使沿着电子束截面宽度方向的电场减小,而沿着电子束截面厚度方向的电场基本不变;对于相同电流和电流密度的带状电子束,更宽、更薄的电子束横截面尺寸能使沿着电子束截面宽度方向的电场降到更低,而沿着电子束截面厚度方向的电场只是略有减小。  相似文献   

12.
We have studied CR lineshape of terahertz-light-induced current in InAs quantum wells in tilted quantizing magnetic fields. We have observed dramatic modification of the lineshape with increasing of in-plane component of magnetic field as well as with increasing of transverse built-in electric field in the well. Scenario of the modification shows that the energy spectrum asymmetry is determined by so-called toroidal moment of the system and is a function of Landau quantum number. Macroscopic self-organization of electrons under the conditions of quantum Hall effect has also been directly demonstrated in both linear and saturation regimes of the light absorption.  相似文献   

13.
Vertical displacements of the peripheral regions of the current sheet with respect to its mean plane have been detected in the case of the sheet formation in the three-dimensional configuration with the X line and longitudinal component of the magnetic field. It has been shown that this effect is due to the generation of Hall currents and the appearance of vertically directed forces. Change in the sign of vertical displacements at the late stage of the sheet evolution has been detected, indicating the generation of opposite Hall currents when the direction of the main current near the side edges of the sheet changes. It has been shown that Hall currents significantly affect the structure of current sheets, and vertical oscillations of the peripheral regions of the current sheet, which appear owing to oppositely directed Hall currents, are involved in the dynamic processes in current sheets.  相似文献   

14.
基于Geant 4的介质深层充电电场计算   总被引:4,自引:0,他引:4       下载免费PDF全文
秦晓刚  贺德衍  王骥 《物理学报》2009,58(1):684-689
基于Geant4模拟了电子在Teflon介质中的电荷输运过程,获得了其内部的电流密度、剂量率和电荷沉积量沿深度的分布曲线,进而利用电荷连续性方程、泊松方程和深层俘获方程求解出Teflon中高能量、小束流电子辐照下的电场分布. 将介质平板充电过程简化为屏蔽铝板与分层介质组成的Geant4模型,电子源为1.0MeV,0.1pA/cm2的平面源. 通过记录经过各层介质的电子电量和各层介质内沉积能量和电子数目,用统计平均的方法获得了介质内电流密度、剂量率和电荷沉积量沿深度的分布规律. 介质内 关键词: 卫星 介质深层充电 Geant4 电场  相似文献   

15.
Quantum-statistical calculations are presented for the anomalous Hall effect in a magnetic sandwich with a tunnel junction across a thin dielectric spacer. The tunneling current flows across the junction perpendicular to the plane of the layers while the Hall component of the current lies in this plane. The Kubo formalism and the Green’s functions are used to calculate the contribution of skew scattering to the Hall conductivity. The classical size effect in the Hall conductivity of this structure is studied and two new effects are observed. One is associated with the dependence of the effective electric field in the magnet on the transparency of the dielectric potential barrier for electrons when the current flows perpendicular to the layers of the structure and may be called “ geometric”. The other occurs as a result of the influence of the strong electric field in the dielectric on the electron motion in the adjacent magnetic layers.  相似文献   

16.
We present multipoint spacecraft observations at the dayside magnetopause of a magnetic reconnection separatrix region. This region separates two plasmas with significantly different temperatures and densities, at a large distance from the X line. We identify which terms in the generalized Ohm's law balance the observed electric field throughout the separatrix region. The electric field inside a thin approximately c/omega pi Hall layer is balanced by the j x B/ne term while other terms dominate elsewhere. On the low density side of the region we observe a density cavity which forms due to the escape of magnetospheric electrons along the newly opened field lines. The perpendicular electric field inside the cavity constitutes a potential jump of several kV. The observed potential jump and field aligned currents can be responsible for strong aurora.  相似文献   

17.
The formation med2aniRm of the interplanetary magnetic cloud (MC) boundaries is numerically investigated by simulating the interactions between an MC of some initial momentum and a local interplanetary current sheet.The compressible 2.51:) MHD equations are solved. R~sults show that the magnetic reconnection process is a possible formation mechanism when an MC interacts with a surrounding current sheet. A number of interesting features are found. For instance, the front boundary of the MCs is a magnetic reconnection boundary that could be caused by a driven reconnection ahead of the cloud, and the tail boundary might be caused by the driving of the entrained flow as a result of the Bernoulli principle. Analysis of the magnetic field and plasma data demonstrates that at these two boundaries appear large value of the plasma parameter β, clear increase of plasma temperature and density, distinct decrease of magnetic magnitude, and a transition of maguetic field direction of about 180 degrees. The outcome of the present simulation agrees qualitatively with the observational results on MC boundary inferred from IMP-8, etc.  相似文献   

18.
The formation mechanism of the interplanetary magnetic cloud (MC) boundaries is numerically investigatedby simulating the interactions between an MC of some initial momentum and a local interplanetary current sheet.The compressible 2.5D MHD equations are solved. Results show that the magnetic reconnection process is a possibleformation mechanism when an MC interacts with a surrounding current sheet. A number of interesting features arefound. For instance, the front boundary of the MCs is a magnetic reconnection boundary that could be caused by adriven reconnection ahead of the cloud, and the tail boundary might be caused by the driving of the entrained flowas a result of the Bernoulli principle. Analysis of the magnetic field and plasma data demonstrates that at these twoboundaries appear large value of the plasma parameterβ, clear increase of plasma temperature and density, distinctdecrease of magnetic magnitude, and a transition of magnetic field direction of about 180 degrees. The outcome of thepresent simulation agrees qualitatively with the observational results on MC boundary inferred from IMP-8, etc.  相似文献   

19.
Magnetotransport in a semiconductor superlattice (SL) under transverse magnetic field has been investigated. It is shown that in weak magnetic and electric fields there is negative magnetoresistivity along the SL layers and positive magnetoresistivity along the SL axis. The Hall resistivity is much less than the usual semiconductor value. With an increase of electric field, there appears a negative differential conductivity (NDC) along the SL layers, and the Hall voltage depends nonlinearly on current density. In higher electric field, destroying the miniband structure, the magnetoresistivity along the SL axis is negative. The magnetoresistivity along the SL axis in strong magnetic field is positive for any current density. The Hall resistivity in strong magnetic (electric) field equals the classical value.  相似文献   

20.
An analysis of the experimental data obtained by holographic interferometry in our work [1] makes it possible to explain most of the observed specific features of the structure and evolution of the plasma sheets developing in a two-dimensional magnetic field with a null line in a plasma with a low initial degree of ionization (≈10−4). The following two processes are shown to play a key role here: additional gas ionization in an electric field and the peculiarities of plasma dynamics in a current sheet expanding in time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号