首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the effects of protic solvent (water, methanol, ethanol, and tert-butyl alcohol) and cation (Na+, K+, Cs+) on the unsymmetrical SN2 reaction X- + RY --> RX + Y- (X = F, Br; R = CH3,C3H7;Y = Cl, OMs). We describe a series of calculations for the S(N)2 reaction mechanism under the influence of cation and protic solvent, presenting the structures of pre- and postreaction complexes and transition states and the magnitude of the activation barrier. An interesting mechanism is proposed, in which the protic solvent molecules that are shielded from the nucleophile by the intervening cation act as a Lewis base to reduce the unfavorable Coulombic influence of the cation on the nucleophile. We predict that the reaction barrier for the S(N)2 reaction is significantly lowered by the cooperative effects of cation and protic solvent. We show that the cation and protic solvent, each of which has been considered to retard the SN2 reactivity of the nucleophile, can accelerate the reaction tremendously when they interact with the fluoride ion in an intricate, combined fashion. This alternative S(N)2 mechanism is discussed in relation to the recently observed phenomenal efficiency of fluorination in tert-alcohol media [Kim, D. W.; et al. J. Am. Chem. Soc. 2006, 128, 16394].  相似文献   

2.
Various copper(I) and copper(II) derivatives, both "simple" ones (copper acetate, perchlorate and a complex with CH3CN) and compounds containing N,O-chelating ligands, catalyse very efficient (turnover numbers attain 2200) oxidation of saturated hydrocarbons with peroxyacetic acid (PAA) or tert-butyl hydroperoxide (TBHP) in acetonitrile solution at 60 degrees C. Alkyl hydroperoxide, alcohol and ketone are formed, the main product being an alkyl hydroperoxide in the oxidation with PAA and an alcohol for the case of TBHP. It has been proposed that the oxidation with PAA is induced via the attack of species r* [HO* or CH3C(=O)O*] on the alkane, RH. A competitive attack of r* on the solvent, CH3CN, also occurs. It has been assumed that in the case of the reaction catalysed by complex Cu(CH3CN)4BF4, copper is present mainly in the form of Cu+ cation, and the rate-limiting step of the oxidation process is the formation of r* via reaction (1): CH3C(=O)OOH + Cu+ --> CH3C(=O)O* + HO- + Cu2+ or/and CH3C(=O)OOH + Cu+ --> CH3C(=O)O- + HO* + Cu2+ with initial rate W1 = k1[PAA][Cu(CH3CN)4BF4] and k1 = 1.7 mol(-1) dm3 s(-1) at 60 degrees C. The activity of the Cu-catalyst is dramatically changed on a small modification of N,O-chelating ligands in the catalyst.  相似文献   

3.
We have recently proposed a mechanism for the epoxidation of cyclooctene by H2O2 catalyzed by iron(III) [tetrakis(pentafluorophenyl)]porphyrin chloride, (F20TPP)FeCl, in solvent containing methanol [Stephenson, N. A.; Bell, A.T. Inorg. Chem. 2006, 45, 2758-2766]. In that study, we found that catalysis did not occur unless (F20TPP)FeCl first dissociated, a process facilitated by the solvation of the Cl- anion by methanol and the coordination of methanol to the (F20TPP)Fe+ cation. Methanol as well as other alcohols was also found to facilitate the heterolytic cleavage of the O-O bond of H2O2 coordinated to the (F20TPP)Fe+ cation via a generalized acid mechanism. In the present study, we have shown that catalytic activity of the (F20TPP)Fe+ cation can be achieved in aprotic solvent by displacing the tightly bound chloride anion with a weakly bound triflate anion. By working in an aprotic solvent, acetonitrile, it was possible to determine the rate of heterolytic O-O bond cleavage in coordinated H2O2 unaffected by the interaction of the peroxide with methanol. A mechanism is proposed for this system and is shown to be valid over a range of reaction conditions. The mechanisms for cyclooctene epoxidation and H2O2 decomposition for the aprotic and protic solvent systems are similar with the only difference being the mechanism of proton-transfer prior to heterolytic cleavage of the oxygen-oxygen bond of coordinated hydrogen peroxide. Comparison of the rate parameters indicates that the utilization of hydrogen peroxide for cyclooctene epoxidation is higher in a protic solvent than in an aprotic solvent and results in a smaller extent of porphyrin degradation due to free radical attack. It was also shown that water can coordinate to the iron porphyrin cation in aprotic systems resulting in catalyst deactivation; this effect was not observed when methanol was present, since methanol was found to displace all of the coordinated water.  相似文献   

4.
The RhIII complex [(PNP)Rh(CN)(CH3)][I] 5, obtained by oxidative addition of methyl iodide to [(PNP)Rh(CN)] 2, reacts selectively in two pathways: In aprotic solvents C-I reductive elimination of methyl iodide followed by its electrophilic attack on the cyano ligand takes place, giving the methyl isonitrile RhI complex [(PNP)Rh(CNCH3)][I] 3, while in protic solvents C-C reductive elimination of acetonitrile takes place forming an iodo RhI complex [(PNP)RhI] 9. Reaction of 2 with ethyl iodide in aprotic solvents gave the corresponding isonitrile complex, while in protic solvents no reactivity was observed. The selectivity of this reaction is likely due to a hydrogen bond between the cyano ligand and the protic solvent, as observed by X-ray diffraction, which retards electrophilic attack on this ligand.  相似文献   

5.
The intermolecular photoinduced electron transfer (PET) processes of 1,8-naphthalimide (NI) derivatives including NI-linker-phenothiazine dyads were investigated in a protic H(2)O/CH(3)CN (v/v=1:1) solvent using ns-laser flash photolysis with 355 nm-laser excitation. NI derivatives are surrounded by H(2)O in the ground state in H(2)O/CH(3)CN. The T(1)-T(n) absorption band of (3)NI* was observed at around 470 nm. The transient absorption band at around 410 nm increased concomitantly with the decay of (3)NI* in H(2)O/CH(3)CN. This implies that hydrated NI anion radical (NI*(-)) is primarily generated via the quenching of (3)NI* by NI at the diffusion control rate. This intermolecular PET did not occur in aprotic CH(3)CN. The formation and decay times of NI*(-) showed strong dependence on the concentration of NI. Then, we suggest that NI*(-) could undergo proton abstraction to give ketyl radical species of NI [NI(H)*] in H(2)O/CH(3)CN.  相似文献   

6.
The study of intermolecular collisions and bonding interactions in solutions is of critical importance in understanding and predicting solute/solvent properties. Previous work has established that stable paramagnetic nitroxide molecules are excellent probes of intermolecular interactions for hydrogen bonding in polar solvents. In this study, 1H, 2H, 13C, 15N NMR and liquid/liquid intermolecular transfer dynamic nuclear polarization (L2IT DNP) results are obtained for the paramagnetic probe molecule, TEMPO, interacting with the common aprotic and protic polar solvents, CH3CN and CH3CONH2, yielding a profile of both dipolar and scalar interactions. A significant scalar contact hyperfine is observed for the N-O...H-C interaction (13CH3 hyperfine, a/h=0.66 MHz) in the CH3CN/TEMPO system, whereas the N-O...H-C and N-O...H-N interactions for the TEMPO/CH3CONH2 system yield 13CH3 and 15N hyperfine couplings of a/h=0.16 and -0.50 MHz, respectively. The distance and attitude of the scalar interaction for the nitroxide hydrogen bonding at the methyl group in CH3CN and the amino group in CH3CONH2 are computed using density functional theory (DFT), yielding good agreement with the experimental results. These results show that the hyperfine coupling provides a sensitive probe of weak hydrogen-bonding interactions in solution.  相似文献   

7.
Through a combination of pulse radiolysis, purification, and analysis techniques, the rate constant for the H + (CH(3))(3)COH → H(2) + (?)CH(2)C(CH(3))(2)OH reaction in aqueous solution is definitively determined to be (1.0 ± 0.15) × 10(5) M(-1) s(-1), which is about half of the tabulated number and 10 times lower than the more recently suggested revision. Our value fits on the Polanyi-type, rate-enthalpy linear correlation ln(k/n) = (0.80 ± 0.05)ΔH + (3.2 ± 0.8) that is found for the analogous reactions of other aqueous aliphatic alcohols with n equivalent abstractable H atoms. The existence of such a correlation and its large slope are interpreted as an indication of the mechanistic similarity of the H atom abstraction from α- and β-carbon atoms in alcohols occurring through the late, product-like transition state. tert-Butyl alcohol is commonly contaminated by much more reactive secondary and primary alcohols (2-propanol, 2-butanol, ethanol, and methanol), whose content can be sufficient for nearly quantitative scavenging of the H atoms, skewing the H atom reactivity pattern, and explaining the disparity of the literature data on the H + (CH(3))(3)COH rate constant. The ubiquitous use of tert-butyl alcohol in pulse radiolysis for investigating H atom reactivity and the results of this work suggest that many other previously reported rate constants for the H atom, particularly the smaller ones, may be in jeopardy.  相似文献   

8.
In this paper we examine the mechanism of [M + H]+ (henceforth MH+) formation by direct photoionization. Based on comparisons of the relative abundance of M+ and MH+ ions for photoionization of a variety of compounds M as vapor in air versus in different solvents, we conclude that the mechanism is M + hnu --> M+ + e- followed by the reaction M+ + S --> MH+ + S(-H). The principal evidence for molecular radical ion formation M+ followed by hydrogen atom abstraction from protic solvent S are: (1) Nearly exclusive formation of M+ for headspace ionization of M in air, (2) significant relative abundance of MH+ in the presence of protic solvents (e.g., CH3OH, H2O, c-hexane), but not in aprotic solvents (e.g., CCl4-), (3) observation of induced equilibrium oscillations in the abundance of MH+ and M+, and (4) correlation of the ratio of MH+/M+ to reaction length in the photoionization source. Thermodynamic models are advanced that explain the qualitative dependence of the MH+/M+ equilibrium ratio on the properties of solvent S and analyte M. Though the hydrogen abstraction reaction is endothermic in most cases, it is shown that the equilibrium constant is still expected to be much greater than unity in most of the cases studied due to the very slow reverse reaction involving the very low abundant MH+ and S(-H) species.  相似文献   

9.
The electronic transitions occurring in 4-(N,N-dimethylamino)-3-hydroxyflavone (DMAF) and 2-furanyl-3-hydroxychromone (FHC) were investigated using the TDDFT method in aprotic and protic solvents. The solvent effect was incorporated into the calculations via the PCM formalism. The H-bonding between solute and protic solvent was taken into account by considering a molecular complex between these molecules. To examine the effect of the H-bond on the ESIPT reaction, the absorption and emission wavelengths as well as the energies of the different states that intervene during these electronic transitions were calculated in acetonitrile, ethanol and methanol. The calculated positions of the absorption and emission wavelengths in various solvents were in excellent agreement with the experimental spectra, validating our approach. We found that in DMAF, the hydrogen bonding with protic solvents makes the ESIPT reaction energetically unfavourable, which explains the absence of the ESIPT tautomer emission in protic solvents. In contrast, the excited tautomer state of FHC remains energetically favourable in both aprotic and protic solvents. Comparing our calculations with the previously reported time-resolved fluorescence data, the ESIPT reaction of DMAF in aprotic solvents is reversible because the emitting states are energetically close, whereas in FHC, ESIPT is irreversible because the tautomer state is below the corresponding normal state. Therefore, the ESIPT reaction in DMAF is controlled by the relative energies of the excited states (thermodynamic control), while in FHC the ESIPT is controlled probably by the energetic barrier (kinetic control).  相似文献   

10.
Doubly charged lead monohydrate, [Pb(H2O)]2+, was predicted to be unstable in the gas phase, but it has recently been observed to form in low yield via ligand change between [Pb(CH3CN)]2+ and H2O [Shi, T.; Orlova, G.; Guo, J.; Bohme, D. K.; Hopkinson, A. C.; Siu, K. W. M. J. Am. Chem. Soc. 2004, 126, 7975-7980]. Here we report that abundant [Pb(H2O)]2+ is formed in the gas phase by ligand-exchange reaction between [Pb(N2)n]2+ (n = 1-3) and water after collisional activation. Density functional theory has been used to examine the ligand-exchange reaction profile. A comparison of the potential-energy surfaces between [Pb(N2)]2+ and [Pb(CH3CN)]2+ reacting with H2O provides strong evidence that the ligand-exchange reaction of [Pb(N2)]2+ with H2O to form [Pb(H2O)]2+ is more efficient than that of [Pb(CH3CN)]2+ with H2O.  相似文献   

11.
The refractive indices (n) and the densities (ρ) of: (1) protic‐protic solvent mixtures (methanol‐ethanol, methanol‐porpanol, methanol‐butanol and ethanol‐water), (2) aprotic‐aprotic solvent mixtures (acetonitrile‐dimethylformamide, acetonitrile‐dimethylsulphoxide, and acetonitrile‐1,4‐dioxane) and (3) aprotic‐protic solvent mixtures (dimethylformamide, acetonitrile with water and some aliphatic alcohols) were measured experimentally at different temperatures (25, 30 and 35 °C). From the values of the measured refractive indices and densities, the excess refractive indices (nE), molar refractions (R), atomic polarization (PA), molar volumes (V), solvated radii (r) and polarizabilities (α) of the mixed solvents were calculated. The results show that the solvent‐solvent interaction reaches maximum value at a definite mole fraction (x) of each solvent depending on its nature. Also, the excess refractive indices, densities and atomic polarizations are found to decrease as the temperature increases. On the other hand, the molar volumes, solvated radii, molar refractions and polarizabilities are found to increase as the temperature increases.  相似文献   

12.
Nonpolar protic reaction media such as t-amyl alcohol allow the aliphatic, nucleophilic fluorination reaction of primary haloalkane systems to fluoroalkanes, using tetrabutylammonium fluoride (TBAF), to proceed chemo-selectively at a reasonable reaction rate under mild conditions to afford the fluoro-product in high yield. As an example, the nucleophilic fluorination of 2-(3-iodopropoxy)naphthalene (1a) as the primary haloalkane model compound, with TBAF in acetonitrile as a polar aprotic solvent, CsF in t-amyl alcohol as a nonpolar protic solvent, and TBAF in t-amyl alcohol for 1 h provided 2-(3-fluoropropoxy)naphthalene (2a) in 38, 5, and 76% yields, respectively.  相似文献   

13.
The S N2 identity exchange reactions of the fluoride ion with benzyl fluoride and 10 para-substituted derivatives (RC6H 4CH 2F, R = CH3, OH, OCH 3, NH2, F, Cl, CCH, CN, COF, and NO2) have been investigated by both rigorous ab initio methods and carefully calibrated density functional theory. Groundbreaking focal-point computations were executed for the C6H5CH 2F + F (-) and C 6H 5CH2Cl + Cl (-) SN2 reactions at the highest possible levels of electronic structure theory, employing complete basis set (CBS) extrapolations of aug-cc-pV XZ (X = 2-5) Hartree-Fock and MP2 energies, and including higher-order electron correlation via CCSD/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ coupled cluster wave functions. Strong linear dependences are found between the computed electrostatic potential at the reaction-center carbon atom and the effective SN2 activation energies within the series of para-substituted benzyl fluorides. An activation strain energy decomposition indicates that the SN2 reactivity of these benzylic compounds is governed by the intrinsic electrostatic interaction between the reacting fragments. The delocalization of nucleophilic charge into the aromatic ring in the SN2 transition states is quite limited and should not be considered the origin of benzylic acceleration of SN2 reactions. Our rigorous focal-point computations validate the benzylic effect by establishing SN2 barriers for (F (-), Cl (-)) identity exchange in (C6H5CH2F, C6H 5CH2Cl) that are lower than those of (CH3F, CH3Cl) by (3.8, 1.6) kcal mol (-1), in order.  相似文献   

14.
A triazole-containing 8-hydroxyquinoline (8-HQ) ether 2 was efficiently synthesized in two steps from the "click" strategy. Compound 2 gave a strong fluorescence (Φ = 0.21) in nonprotic solvent like CH(3)CN, and a weak fluorescence (Φ = 0.06) in protic solvent like water. In water, a more than 100 nm red shift of the fluorescence maximum was observed for compound 2 in comparison with that in CH(3)CN. This fluorescence difference may be attributed to the intermolecular photoinduced proton transfer (PPT) process involving the protic solvent water molecules. Similarly, this intermolecular PPT process was also observed in the high-water-content CH(3)CN aqueous solution (e.g., CH(3)CN/H(2)O = 5/95, v/v). The water content in the CH(3)CN/H(2)O binary solvent mixture greatly affected the fluorescence intensity (e.g., Φ = 0.06 and 0.25 when CH(3)CN/H(2)O = 5/95 and 95/5, v/v, respectively) and emission wavelength. Using this interesting property, by simple variation of the water content in the CH(3)CN aqueous solution, compound 2 was tuned from a selective "turn-on" fluorescent sensor for Zn(2+) (CH(3)CN/H(2)O = 5/95, v/v) to a ratiometric one for Zn(2+) and a selective "turn-off" one for Fe(3+) (CH(3)CN/H(2)O = 95/5, v/v) over a wide range of pH value. In high-water-content (CH(3)CN/H(2)O = 5/95, v/v) aqueous solution compound 2 shows a selective "turn-on" response toward Zn(2+), with a 10-fold enhancement in the fluorescence intensity at 428 nm and a 62 nm blue shift of the emission maximum (490 to 428 nm) due to the inhibition of intermolecular PPT process upon chelating with Zn(2+). However, in a less polar solvent (CH(3)CN/H(2)O = 95/5, v/v) in which compound 2 has high fluorescence (quantum yield =0.25), it shows a ratiometric response toward Zn(2+), with a continuous decrease of the fluorescence intensity at 399 nm and an increase at 423 nm. More interestingly, in this case, it also exhibits a very sensitive, selective, and ratiometric fluorescence quenching in the presence of Fe(3+), with an 81 nm red shift of the emission maximum (399 to 480 nm) in a wide range of pH through a metal ligand charge transfer (MLCT) effect.  相似文献   

15.
The reaction of 3-substituted indoles with 2-cyclohexenone under Lewis acid mediated conditions with Bi(NO3)3·5H2O has been investigated. We have demonstrated that electrophilic substitution of 3-substituted indoles with 2-cyclohexenone will readily occur at the nitrogen. Furthermore, the extent of regioselectivity is dependent on reaction solvent and the C3-substituent. Excellent conversion is obtained with good to excellent isolated yields of N- and C2-adducts. In general, more polar, aprotic solvents (CH3CN) give greater N-selectivity whereas with polar protic solvents (CH3OH) an increase in the C2-adduct is observed.  相似文献   

16.
The hydrogen abstraction reactions C2H + CH3CN --> products (R1), C2H + CH3CH2CN --> products (R2), and C2H + CH3CH2CH2CN --> products (R3) have been investigated by dual-level generalized transition state theory. Optimized geometries and frequencies of all the stationary points and extra points along the minimum-energy path (MEP) are performed at the BH&H-LYP and MP2 methods with the 6-311G(d, p) basis set, and the energy profiles are further refined at the MC-QCISD level of theory. The rate constants are evaluated using canonical variational transition state theory (CVT) with a small-curvature tunneling correction (SCT) over a wide temperature range 104-2000 K. The calculated CVT/SCT rate constants are in good agreement with the available experimental values. Our calculations show that for reaction R2, the alpha-hydrogen abstraction channel and beta-hydrogen abstraction channel are competitive over the whole temperature range. For reaction R3, the gamma-hydrogen abstraction channel is preferred at lower temperatures, while the contribution of beta-hydrogen abstraction will become more significant with a temperature increase. The branching ratio to the alpha-hydrogen abstraction channel is found negligible over the whole temperature range.  相似文献   

17.
The activation parameters and optimized structures of the reactants and transition states in the S(N)2 reactions of substituted pyridines and N,N-dimethylanilines with methyl iodide were computed at the DFT level in different solvents. The measured and calculated deltaG/deltaH/deltaS versus sigma plots proved to be linear, and their slopes, the deltadeltaG, deltadeltaH, and deltadeltaS reaction constants, were determined. The least solvent-dependent deltadeltaG reaction constants can be computed with acceptable accuracy. The calculated deltadeltaS data decrease only very slightly with the jointly increasing electron-withdrawing effect of the substituents and tightness of the transition states. The measured deltadeltaS values are influenced mainly by the change of solvation in the reactions, and deltadeltaH is also influenced by the reorganization of the solvent. Consequently, the experimental and calculated deltadeltaS and deltadeltaH reaction constants may deviate considerably from each other. In dipolar aprotic solvents the measured deltadeltaS was less than zero, and in protic solvents it was greater than zero. The ordering of the solvent molecules around the transition state with increasing charge is increased in the former but decreased in the latter media, as compared to the bulk of the solvents. The calculated deltaG(o), deltaH(o), and deltaS(o) parameters of the unsubstituted compounds agree relatively well with the experimental data for reactions of neutral molecules in dipolar aprotic solvents (e.g., XC6H4N(CH3)2 + CH3I). On the other hand, the measured and calculated activation parameters may show considerable deviations for reactions of ions (e.g., XC5H4NCH3+ + I-) and for any reaction in protic solvents.  相似文献   

18.
自由基CN、CH、H在燃烧化学、大气化学、天体发光、环境污染等方面占有极为重要的地位,对于这些自由基发光及形成动力学机理的探讨,无疑是重要的.近年来,人们利用亚稳态惰性原子与膨化物碰撞传能,探讨了CN(AB-+X)的化学发光[‘一、发现亚稳态的Ar(‘几,。)原子与H  相似文献   

19.
Heterolysis of 1-methyl-1-chlorocyclopentane in protic and aprotic solvents occurs by the E1 mechanism. The reaction rate in aprotic solvents or in a set of protic and aprotic solvents is satisfactorily described by the parameters of the polarity and electrophilicity or ionizing power of the solvents. In protic solvents, the reaction rate grows with increasing polarity or ionizing power of the solvent and decreases with increasing nucleophilicity.  相似文献   

20.
Abstract Substantial isotope effects have been observed for the dye sensitised photo-oxidation of 1,3-diphenyl-2-pyrazoline in both polar and non polar solvents, implicating singlet oxygen as a reactive intermediate. By way of contrast, a solvent isotope effect upon the direct photo-oxidation of the pyrazoline was only observed when a protic solvent (methanol) was used. It was found that the photophysical properties (e.g. quantum yields and fluorescence lifetimes) of pyrazolines are sensitive to the isotopic composition of protic solvents but not aprotic solvents. The solvent isotope effect observed for the direct photo-oxidation reaction in methanol may not therefore be a true indication of the participation of singlet oxygen. Since this reaction may not be singlet oxygen mediated, an alternative mechanism is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号