首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove that Haag duality holds for cones in the toric code model. That is, for a cone ??, the algebra ${\mathcal{R}_{\Lambda}}$ of observables localized in ?? and the algebra ${\mathcal{R}_{\Lambda^c}}$ of observables localized in the complement ?? c generate each other??s commutant as von Neumann algebras. Moreover, we show that the distal split property holds: if ${\Lambda_1 \subset \Lambda_2}$ are two cones whose boundaries are well separated, there is a Type I factor ${\mathcal{N}}$ such that ${\mathcal{R}_{\Lambda_1} \subset \mathcal{N} \subset \mathcal{R}_{\Lambda_2}}$ . We demonstrate this by explicitly constructing ${\mathcal{N}}$ .  相似文献   

2.
The Lie–Rinehart algebra of a (connected) manifold ${\mathcal {M}}$ , defined by the Lie structure of the vector fields, their action and their module structure over ${C^\infty({\mathcal {M}})}$ , is a common, diffeomorphism invariant, algebra for both classical and quantum mechanics. Its (noncommutative) Poisson universal enveloping algebra ${\Lambda_{R}({\mathcal {M}})}$ , with the Lie–Rinehart product identified with the symmetric product, contains a central variable (a central sequence for non-compact ${{\mathcal {M}}}$ ) ${Z}$ which relates the commutators to the Lie products. Classical and quantum mechanics are its only factorial realizations, corresponding to Z  =  i z, z  =  0 and ${z = \hbar}$ , respectively; canonical quantization uniquely follows from such a general geometrical structure. For ${z =\hbar \neq 0}$ , the regular factorial Hilbert space representations of ${\Lambda_{R}({\mathcal{M}})}$ describe quantum mechanics on ${{\mathcal {M}}}$ . For z  =  0, if Diff( ${{\mathcal {M}}}$ ) is unitarily implemented, they are unitarily equivalent, up to multiplicity, to the representation defined by classical mechanics on ${{\mathcal {M}}}$ .  相似文献   

3.
We propose a dictionary between geometry of triangulated 3-manifolds and physics of three-dimensional ${\mathcal{N} = 2}$ gauge theories. Under this duality, standard operations on triangulated 3-manifolds and various invariants thereof (classical as well as quantum) find a natural interpretation in field theory. For example, independence of the SL(2) Chern-Simons partition function on the choice of triangulation translates to a statement that ${S^{3}_{b}}$ partition functions of two mirror 3d ${\mathcal{N} = 2}$ gauge theories are equal. Three-dimensional ${\mathcal{N} = 2}$ field theories associated to 3-manifolds can be thought of as theories that describe boundary conditions and duality walls in four-dimensional ${\mathcal{N} = 2}$ SCFTs, thus making the whole construction functorial with respect to cobordisms and gluing.  相似文献   

4.
Given a conformal QFT local net of von Neumann algebras ${\mathcal {B}_2}$ on the two-dimensional Minkowski spacetime with irreducible subnet ${\mathcal {A} \otimes \mathcal {A}}$ , where ${\mathcal {A}}$ is a completely rational net on the left/right light-ray, we show how to consistently add a boundary to ${\mathcal {B}_2}$ : we provide a procedure to construct a Boundary CFT net ${\mathcal {B}}$ of von Neumann algebras on the half-plane x >  0, associated with ${\mathcal {A}}$ , and locally isomorphic to ${\mathcal {B}_2}$ . All such locally isomorphic Boundary CFT nets arise in this way. There are only finitely many locally isomorphic Boundary CFT nets and we get them all together. In essence, we show how to directly redefine the C* representation of the restriction of ${\mathcal {B}_2}$ to the half-plane by means of subfactors and local conformal nets of von Neumann algebras on S 1.  相似文献   

5.
Let ${Y_{m|n}^{\ell}}$ be the super Yangian of general linear Lie superalgebra for ${\mathfrak{gl}_{m|n}}$ . Let ${e \in \mathfrak{gl}_{m\ell|n\ell}}$ be a “rectangular” nilpotent element and ${\mathcal{W}_e}$ be the finite W-superalgebra associated to e. We show that ${Y_{m|n}^{\ell}}$ is isomorphic to ${\mathcal{W}_e}$ .  相似文献   

6.
In (Rie?anová and Zajac in Rep. Math. Phys. 70(2):283–290, 2012) it was shown that an effect algebra E with an ordering set $\mathcal{M}$ of states can by embedded into a Hilbert space effect algebra $\mathcal{E}(l_{2}(\mathcal{M}))$ . We consider the problem when its effect algebraic MacNeille completion $\hat{E}$ can be also embedded into the same Hilbert space effect algebra $\mathcal {E}(l_{2}(\mathcal{M}))$ . That is when the ordering set $\mathcal{M}$ of states on E can be extended to an ordering set of states on $\hat{E}$ . We give an answer for all Archimedean MV-effect algebras and Archimedean atomic lattice effect algebras.  相似文献   

7.
We present a relation between ${\mathcal{N}=2}$ quiver gauge theories on the ALE space ${\mathcal{O}_{\mathbb{P}^1}(-2)}$ and correlators of ${\mathcal{N}=1}$ super Liouville conformal field theory, providing checks in the case of punctured spheres and tori. We derive a blow-up formula for the full Nekrasov partition function and show that, up to a U(1) factor, the ${\mathcal{N}=2^*}$ instanton partition function is given by the product of the character of ${\widehat{SU}(2)_2}$ times the super Virasoro conformal block on the torus with one puncture. Moreover, we match the perturbative gauge theory contribution with super Liouville three-point functions.  相似文献   

8.
We study the metric aspect of the Moyal plane from Connes’ noncommutative geometry point of view. First, we compute Connes’ spectral distance associated with the natural isometric action of ${\mathbb{R}^2}$ R 2 on the algebra of the Moyal plane ${\mathcal{A}}$ A . We show that the distance between any state of ${\mathcal{A}}$ A and any of its translated states is precisely the amplitude of the translation. As a consequence, we obtain the spectral distance between coherent states of the quantum harmonic oscillator as the Euclidean distance on the plane. We investigate the classical limit, showing that the set of coherent states equipped with Connes’ spectral distance tends towards the Euclidean plane as the parameter of deformation goes to zero. The extension of these results to the action of the symplectic group is also discussed, with particular emphasis on the orbits of coherent states under rotations. Second, we compute the spectral distance in the double Moyal plane, intended as the product of (the minimal unitization of) ${\mathcal{A}}$ A by ${\mathbb{C}^2}$ C 2 . We show that on the set of states obtained by translation of an arbitrary state of ${\mathcal{A}}$ A , this distance is given by the Pythagoras theorem. On the way, we prove some Pythagoras inequalities for the product of arbitrary unital and non-degenerate spectral triples. Applied to the Doplicher- Fredenhagen-Roberts model of quantum spacetime [DFR], these two theorems show that Connes’ spectral distance and the DFR quantum length coincide on the set of states of optimal localization.  相似文献   

9.
We study the entropy flux in the stationary state of a finite one-dimensional sample ${\mathcal{S}}$ connected at its left and right ends to two infinitely extended reservoirs ${\mathcal{R}_{l/r}}$ at distinct (inverse) temperatures ${\beta_{l/r}}$ and chemical potentials ${\mu_{l/r}}$ . The sample is a free lattice Fermi gas confined to a box [0, L] with energy operator ${h_{\mathcal{S}, L}= - \Delta + v}$ . The Landauer-Büttiker formula expresses the steady state entropy flux in the coupled system ${\mathcal{R}_l + \mathcal{S} + \mathcal{R}_r}$ in terms of scattering data. We study the behaviour of this steady state entropy flux in the limit ${L \to \infty}$ and relate persistence of transport to norm bounds on the transfer matrices of the limiting half-line Schrödinger operator ${h_\mathcal{S}}$ .  相似文献   

10.
We consider Hermitian and symmetric random band matrices H = (h xy ) in ${d\,\geqslant\,1}$ d ? 1 dimensions. The matrix entries h xy , indexed by ${x,y \in (\mathbb{Z}/L\mathbb{Z})^d}$ x , y ∈ ( Z / L Z ) d , are independent, centred random variables with variances ${s_{xy} = \mathbb{E} |h_{xy}|^2}$ s x y = E | h x y | 2 . We assume that s xy is negligible if |x ? y| exceeds the band width W. In one dimension we prove that the eigenvectors of H are delocalized if ${W\gg L^{4/5}}$ W ? L 4 / 5 . We also show that the magnitude of the matrix entries ${|{G_{xy}}|^2}$ | G x y | 2 of the resolvent ${G=G(z)=(H-z)^{-1}}$ G = G ( z ) = ( H - z ) - 1 is self-averaging and we compute ${\mathbb{E} |{G_{xy}}|^2}$ E | G x y | 2 . We show that, as ${L\to\infty}$ L → ∞ and ${W\gg L^{4/5}}$ W ? L 4 / 5 , the behaviour of ${\mathbb{E} |G_{xy}|^2}$ E | G x y | 2 is governed by a diffusion operator whose diffusion constant we compute. Similar results are obtained in higher dimensions.  相似文献   

11.
Let $\mathcal{B}(\mathcal{H})$ be the set of all bounded linear operators on the separable Hilbert space  $\mathcal{H}$ . A (generalized) quantum operation is a bounded linear operator defined on  $\mathcal{B}(\mathcal{H})$ , which has the form $\varPhi_{\mathcal{A}}(X)=\sum_{i=1}^{\infty}A_{i}XA_{i}^{*}$ , where $A_{i}\in\mathcal{B}(\mathcal{H})$ (i=1,2,…) satisfy $\sum_{i=1}^{\infty}A_{i}A_{i}^{*}\leq \nobreak I$ in the strong operator topology. In this paper, we establish the relationship between the (generalized) quantum operation $\varPhi_{\mathcal{A}}$ and its dual $\varPhi_{\mathcal {A}}^{\dag}$ with respect to the set of fixed points and the noiseless subspace. In particular, we also partially characterize the extreme points of the set of all (generalized) quantum operations and give some equivalent conditions for the correctable quantum channel.  相似文献   

12.
This paper is concerned with stochastic processes that model multiple (or iterated) scattering in classical mechanical systems of billiard type, defined below. From a given (deterministic) system of billiard type, a random process with transition probabilities operator P is introduced by assuming that some of the dynamical variables are random with prescribed probability distributions. Of particular interest are systems with weak scattering, which are associated to parametric families of operators P h , depending on a geometric or mechanical parameter h, that approaches the identity as h goes to 0. It is shown that (P h ? I)/h converges for small h to a second order elliptic differential operator ${\mathcal{L}}$ L on compactly supported functions and that the Markov chain process associated to P h converges to a diffusion with infinitesimal generator ${\mathcal{L}}$ L . Both P h and ${\mathcal{L}}$ L are self-adjoint (densely) defined on the space ${L^2(\mathbb{H},\eta)}$ L 2 ( H , η ) of square-integrable functions over the (lower) half-space ${\mathbb{H}}$ H in ${\mathbb{R}^m}$ R m , where η is a stationary measure. This measure’s density is either (post-collision) Maxwell-Boltzmann distribution or Knudsen cosine law, and the random processes with infinitesimal generator ${\mathcal{L}}$ L respectively correspond to what we call MB diffusion and (generalized) Legendre diffusion. Concrete examples of simple mechanical systems are given and illustrated by numerically simulating the random processes.  相似文献   

13.
We compute the elliptic genera of two-dimensional ${\mathcal{N} = (2, 2)}$ and ${\mathcal{N} = (0, 2)}$ -gauged linear sigma models via supersymmetric localization, for rank-one gauge groups. The elliptic genus is expressed as a sum over residues of a meromorphic function whose argument is the holonomy of the gauge field along both the spatial and the temporal directions of the torus. We illustrate our formulas by a few examples including the quintic Calabi–Yau, ${\mathcal{N} = (2, 2)}$ SU(2) and O(2) gauge theories coupled to N fundamental chiral multiplets, and a geometric ${\mathcal{N} = (0, 2)}$ model.  相似文献   

14.
We introduce a new type of algebra, the Courant–Dorfman algebra. These are to Courant algebroids what Lie–Rinehart algebras are to Lie algebroids, or Poisson algebras to Poisson manifolds. We work with arbitrary rings and modules, without any regularity, finiteness or non-degeneracy assumptions. To each Courant–Dorfman algebra ${(\mathcal{R}, \mathcal{E})}$ we associate a differential graded algebra ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ in a functorial way by means of explicit formulas. We describe two canonical filtrations on ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ , and derive an analogue of the Cartan relations for derivations of ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ ; we classify central extensions of ${\mathcal{E}}$ in terms of ${H^2(\mathcal{E}, \mathcal{R})}$ and study the canonical cocycle ${\Theta \in \mathcal{C}^3(\mathcal{E}, \mathcal{R})}$ whose class ${[\Theta]}$ obstructs re-scalings of the Courant–Dorfman structure. In the nondegenerate case, we also explicitly describe the Poisson bracket on ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ ; for Courant–Dorfman algebras associated to Courant algebroids over finite-dimensional smooth manifolds, we prove that the Poisson dg algebra ${\mathcal{C}(\mathcal{E}, \mathcal{R})}$ is isomorphic to the one constructed in Roytenberg (On the structure of graded symplectic supermanifolds and Courant algebroids. American Mathematical Society, Providence, 2002) using graded manifolds.  相似文献   

15.
We build up local, time translation covariant Boundary Quantum Field Theory nets of von Neumann algebras ${\mathcal A_V}$ on the Minkowski half-plane M + starting with a local conformal net ${\mathcal A}$ of von Neumann algebras on ${\mathbb R}$ and an element V of a unitary semigroup ${\mathcal E(\mathcal A)}$ associated with ${\mathcal A}$ . The case V?=?1 reduces to the net ${\mathcal A_+}$ considered by Rehren and one of the authors; if the vacuum character of ${\mathcal A}$ is summable, ${\mathcal A_V}$ is locally isomorphic to ${\mathcal A_+}$ . We discuss the structure of the semigroup ${\mathcal E(\mathcal A)}$ . By using a one-particle version of Borchers theorem and standard subspace analysis, we provide an abstract analog of the Beurling-Lax theorem that allows us to describe, in particular, all unitaries on the one-particle Hilbert space whose second quantization promotion belongs to ${\mathcal E(\mathcal A^{(0)})}$ with ${\mathcal A^{(0)}}$ the U(1)-current net. Each such unitary is attached to a scattering function or, more generally, to a symmetric inner function. We then obtain families of models via any Buchholz-Mack-Todorov extension of ${\mathcal A^{(0)}}$ . A further family of models comes from the Ising model.  相似文献   

16.
Assume ${\mathcal{A}}$ is a Fréchet algebra equipped with a smooth isometric action of a vector group V, and consider Rieffel’s deformation ${\mathcal{A}_J}$ of ${\mathcal{A}}$ . We construct an explicit isomorphism between the smooth crossed products ${V\ltimes\mathcal{A}_J}$ and ${V\ltimes\mathcal{A}}$ . When combined with the Elliott–Natsume–Nest isomorphism, this immediately implies that the periodic cyclic cohomology is invariant under deformation. Specializing to the case of smooth subalgebras of C*-algebras, we also get a simple proof of equivalence of Rieffel’s and Kasprzak’s approaches to deformation.  相似文献   

17.
One of the best understood families of logarithmic onformal field theories consists of the (1, p) models (p =  2, 3, . . .) of central charge c 1, p =1 ? 6(p ? 1)2/p. This family includes the theories corresponding to the singlet algebras ${\mathcal{M}(p)}$ and the triplet algebras ${\mathcal{W}(p)}$ , as well as the ubiquitous symplectic fermions theory. In this work, these algebras are realised through a coset construction. The ${W^{(2)}_n}$ algebra of level k was introduced by Feigin and Semikhatov as a (conjectured) quantum hamiltonian reduction of ${\widehat{\mathfrak{sl}}(n)_k}$ , generalising the Bershadsky–Polyakov algebra ${W^{(2)}_3}$ . Inspired by work of Adamovi? for p = 3, vertex algebras ${\mathcal{B}_p}$ are constructed as subalgebras of the kernel of certain screening charges acting on a rank 2 lattice vertex algebra of indefinite signature. It is shown that for p≤5, the algebra ${\mathcal{B}_p}$ is a quotient of ${W^{(2)}_{p-1}}$ at level ?(p ? 1)2/p and that the known part of the operator product algebra of the latter algebra is consistent with this holding for p> 5 as well. The triplet algebra ${\mathcal{W}(p)}$ is then realised as a coset inside the full kernel of the screening operator, while the singlet algebra ${\mathcal{M}(p)}$ is similarly realised inside ${\mathcal{B}_p}$ . As an application, and to illustrate these results, the coset character decompositions are explicitly worked out for p =  2 and 3.  相似文献   

18.
We establish a new criterion for the dynamical stability of black holes in D ≥ 4 spacetime dimensions in general relativity with respect to axisymmetric perturbations: Dynamical stability is equivalent to the positivity of the canonical energy, ${\mathcal{E}}$ , on a subspace, ${\mathcal{T}}$ , of linearized solutions that have vanishing linearized ADM mass, momentum, and angular momentum at infinity and satisfy certain gauge conditions at the horizon. This is shown by proving that—apart from pure gauge perturbations and perturbations towards other stationary black holes— ${\mathcal{E}}$ is nondegenerate on ${\mathcal{T}}$ and that, for axisymmetric perturbations, ${\mathcal{E}}$ has positive flux properties at both infinity and the horizon. We further show that ${\mathcal{E}}$ is related to the second order variations of mass, angular momentum, and horizon area by ${\mathcal{E} = \delta^2 M -\sum_A \Omega_A \delta^2 J_A - \frac{\kappa}{8\pi}\delta^2 A}$ , thereby establishing a close connection between dynamical stability and thermodynamic stability. Thermodynamic instability of a family of black holes need not imply dynamical instability because the perturbations towards other members of the family will not, in general, have vanishing linearized ADM mass and/or angular momentum. However, we prove that for any black brane corresponding to a thermodynamically unstable black hole, sufficiently long wavelength perturbations can be found with ${\mathcal{E} < 0}$ and vanishing linearized ADM quantities. Thus, all black branes corresponding to thermodynmically unstable black holes are dynamically unstable, as conjectured by Gubser and Mitra. We also prove that positivity of ${\mathcal{E}}$ on ${\mathcal{T}}$ is equivalent to the satisfaction of a “ local Penrose inequality,” thus showing that satisfaction of this local Penrose inequality is necessary and sufficient for dynamical stability. Although we restrict our considerations in this paper to vacuum general relativity, most of the results of this paper are derived using general Lagrangian and Hamiltonian methods and therefore can be straightforwardly generalized to allow for the presence of matter fields and/or to the case of an arbitrary diffeomorphism covariant gravitational action.  相似文献   

19.
Given a positive and unitarily invariant Lagrangian ${\mathcal{L}}$ defined in the algebra of matrices, and a fixed time interval ${[0,t_0]\subset\mathbb R}$ , we study the action defined in the Lie group of ${n\times n}$ unitary matrices ${\mathcal{U}(n)}$ by $$\mathcal{S}(\alpha)=\int_0^{t_0} \mathcal{L}(\dot\alpha(t))\,dt, $$ where ${\alpha:[0,t_0]\to\mathcal{U}(n)}$ is a rectifiable curve. We prove that the one-parameter subgroups of ${\mathcal{U}(n)}$ are the optimal paths, provided the spectrum of the exponent is bounded by π. Moreover, if ${\mathcal{L}}$ is strictly convex, we prove that one-parameter subgroups are the unique optimal curves joining given endpoints. Finally, we also study the connection of these results with unitarily invariant metrics in ${\mathcal{U}(n)}$ as well as angular metrics in the Grassmann manifold.  相似文献   

20.
To every 3-manifold M one can associate a two-dimensional ${\mathcal{N}=(2, 2)}$ supersymmetric field theory by compactifying five-dimensional ${\mathcal{N}=2}$ super-Yang?CMills theory on M. This system naturally appears in the study of half-BPS surface operators in four-dimensional ${\mathcal{N}=2}$ gauge theories on one hand, and in the geometric approach to knot homologies, on the other. We study the relation between vortex counting in such two-dimensional ${\mathcal{N}=(2, 2)}$ supersymmetric field theories and the refined BPS invariants of the dual geometries. In certain cases, this counting can also be mapped to the computation of degenerate conformal blocks in two-dimensional CFT??s. Degenerate limits of vertex operators in CFT receive a simple interpretation via geometric transitions in BPS counting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号