首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K. Dittrich 《Talanta》1977,24(12):735-739
The atomic-absorption determination of traces of Ga in In, P, As and InAs and of traces of In in Ga, P, As, GaAs and gap is described. The mechanism of the evaporation of the trace element according to the medium used (HCl or HNO3) is discussed. Nitric acid medium is recommended for analytical determinations. The evaporation of the trace elements and matrices was investigated by means of absorbance vs. time curves. It is shown that a thermal fractionation of AsO3−4 and PO3−4 matrices and Ga and In traces is possible in the ashing step. In the case of Ga the thermal fractionation of the matrices (In3+, In3+/AsO3−4) from the trace element is possible in the atomization step. The thermal fractionation of In traces from the matrices (Ga3+, Ga3+/AsO3−4, Ga3+/Po3−4) is impossible. The results and the reasons for the non-specific absorption are discussed. The absolute detection limits are Ga 45 pg, In 35 pg. The relative detection limits are 1 ppm in a 0.1 mg sample.  相似文献   

2.
An analytical flow-injection procedure based on PbSO4 colloidal formation is proposed as a turbidimetric determination of sulphate in natural waters. Ethanol-water was used as a medium in order to improve the sensibility of the method. Both chemical and flow variables as well as interfering species were studied. A detection limit of 0.3 μg SO2−4 ml−1 was found, and the analytical range (according to Beer's law) was 2–20 μg SO2−4 ml−1. The precision was better than 3% R.S.D. and the sample throughput was ca. 35 h−1. The method, when compared with a standard methodology, gave good results when applied to water analysis.  相似文献   

3.
K. Dittrich 《Talanta》1977,24(12):725-733
The evaporation of the species Ga3+, In3+, PO3−4, AsO3−4, Ga3+/AsO3−4, Ga3+/PO3−4 and In3+/AsO3−4 in HCl and HNO3 medium was investigated by measurement of the non-specific absorption at 250 nm, in a graphite cuvette, with a continuum light source. The maximum of the non-specific absorption is given for the ashing and atomizing phases as a function of the ashing temperatures. Ashing temperatures for analytical determinations can be derived from the results. The mechanisms of evaporation of the substances were investigated by means of extinction-time curves. Absorption spectra of the matrices and of the pure acids used were measured between 190 and 330 nm in the graphite cuvette at different ashing and atomizing temperatures. The InCl- and GaCl-bands of the C-system and new bands of GaO- and InO-molecules were found. The PO-band at 246 nm was detected. The results are discussed and can be applied for thermal fractionation and for background correction by the two-line method in trace analysis by electrothermal AAS.  相似文献   

4.
A catalytic flow-injection (FI) method was developed for the determination of 10−9 mol l−1 levels of vanadium(IV, V). The method is based on the catalytic effect of vanadium(V) on oxidation of N-(3-sulfopropyl)-3,3′,5,5′-tetramethylbenzidine (TMBZ·PS) using bromate as oxidant to form a yellow dye (λmax=460 nm). The use of 5-sulfosalicylic acid (SSA) as an activator enhanced the sensitivity of the method. The calibration graphs with a working range 0.05–8.0 ng ml−1 were obtained for vanadium(V). Vanadium(IV) was also determined, being oxidized by bromate. The detection limit (signal/noise, S/N=3) was 0.01 ng ml−1 (ca. 2×10−10 mol l−1) vanadium. The relative standard deviations (R.S.D.) for 15 determinations of 0.5 ng ml−1 vanadium, and for ten determinations of 0.1 and 1.0 ng ml−1 vanadium were 0.41, 2.6 and 0.25%, respectively, with a sampling rate of 15 samples h−1. The proposed method was successfully applied to the determination of vanadium in natural waters.  相似文献   

5.
Cha KW  Park CI  Park SH 《Talanta》2000,52(6):689-989
Uranium(VI) complexed with aluminon (3-[bis(3-carboxy-4-hydroxy-phenyl)methylene]-6-oxo-1,4-cyclohexadiene-1-carboxylic acid triammonium salt) was determined by adsorptive cathodic stripping voltammetry (ACSV) using a hanging mercury drop electrode. Trace uranium(VI) and zinc(II) can be simultaneously determined in a single scan in the presence of aluminon and urea. Optimal conditions were found to be: accumulation time; 180–200 s, accumulation potential; 50 mV versus Ag/AgCl, scan rate; 40 mV s−1, supporting electrolyte; 0.1 M sodium acetate buffer at pH 6.5–7.0, and concentration of aluminon; 1×10−6 M. The linear range of uranium(VI) and zinc(II) were observed over the concentration range 2–33 and 30–120 ng ml−1, respectively. The detection limit (S/N=3) are 0.2 ng ml−1 (uranium) and 30 ng ml−1 (zinc). A good reproducibility shows RSDs of 2.5–4.0% (n=10). The procedure offers high selectivity, with the presence of urea masking some metal ions.  相似文献   

6.
Composite diazotization-coupling reagents containing sulfanilamide (SAM), sulfapyridine (SP) or sulfathiazole (ST) as the diazotizable aromatic amines and sodium 1-naphthol-4-sulfonate (NS) as the coupling agent using column preconcentration on naphthalene-tetradecyldimethylbenzylammonium(TDBA)-iodide adsorbent have been used for the spectrometric determination of trace nitrate and nitrite in soil and water samples. Nitrite ion reacts with SAM in the pH range 2.0–5.0, SP in the pH range 2.0–2.5 and ST in the pH range 2.0–3.3 in HCl medium to form water-soluble colourless diazonium cations. These cations were coupled with NS in the pH range 9.0–12.0 for the SAM system, 9.6–12.0 for the SP system and 8.5–12.0 for the ST system to be retained on naphthalene-TDBA-I material packed in a column. The solid mass is dissolved from the column with 5 ml of dimethylformamide and the absorbance is measured spectrometerically at 543 nm for SAM-NS, 533 nm for SP-NS and 535 nm for ST-NS. Nitrate is reduced to nitrite by a copper-coated cadmium reductor column and the nitrite is then treated with the diazotization-coupling reagent by column preconcentration. The absorbance due to the sum of nitrate and nitrite is measured and nitrate is determined by difference. The calibration graph was linear over the range 2–40 ng NO2-N ml−1 and 1.5–30 ng NO3-N ml−1 in aqueous samples for the SAM and ST systems and 2–48 ng NO2-N ml−1 and 1.5–36 ng NO3-N ml−1 in aqueous samples for the SP system, respectively. The sensitivity, accuracy and precision of the systems decreased in the order STSAMSP. The detection limits were 1.4 ng NO2-N ml−1 and 1.1 ng NO3-N ml−1 for SAM, 1.6 ng NO2-N ml−1 and 1.2 ng NO3-N ml−1 for SP, and 1.0 ng NO2-N ml−1 and 0.75 ng NO3-N ml−1 for ST, respectively. The preconcentration factors are 8, 5 and 6 for SAM-NS, SP-NS and ST-NS, respectively. Interferences from various foreign ions have been studied and the methods have been applied to the determination of ng ml−1 levels of nitrite and nitrate in soil and water samples. The mean recovery was 95–102% for all three systems.  相似文献   

7.
Malaiyandi M  Sastri VS 《Talanta》1983,30(12):983-985
Studies on the decomposition rates of the Mn(III) complex of cyclohexanediaminetetra-acetate (DCTA) in light and in darkness have shown that this complex is more stable than the one derived from ethylenediaminetetra-acetate. The optimum pH range for the determination of dissolved oxygen by means of the Mn(III)-DCTA complex is found to be between 3 and 4. The absorbance of this complex is independent of the amount of DCTA used (in the range 0.2–1.0 g) with water samples containing a maximum of 3.2 ppm of dissolved oxygen. Significant interferences are caused by the presence of CO2−3, HCO3, S2O2−3, PO3−4, I, NO2, SO2−3, Ca2+, Fe2+ and Fe3+ at 500 times the oxygen concentration.  相似文献   

8.
Singh HB  Agnihotri NK  Singh VK 《Talanta》1998,47(5):4717-1296
A rapid and sensitive method for the trace level determination of beryllium based on the formation of a 1:2 complex (λmax 560 nm) with 1,4-dihydroxy-9,10-anthracenedione in an aqueous medium containing Triton X-100 is reported. Beer’s law is followed in the range 3.60–360 ng ml−1 of Be(II). The molar absorptivity and Sandell’s sensitivity are 1.68×104 l mol−1cm−1 and 0.54 ng cm−2, respectively; detection limit is 0.23 ng ml−1 of Be(II). Analysis of synthetic mixtures of composition similar to that of alloys and spiked samples of distilled water, gave results that are in agreement with their beryllium content.  相似文献   

9.
Ahmed MJ  Banoo S 《Talanta》1999,48(5):711-1094
The very sensitive, fairly selective direct spectrophotometric method for the determination of trace amount of vanadium (V) with 1,5-diphenylcarbohydrazide (1,5-diphenylcarbazide) has been developed. 1,5-diphenylcarbohydrazide (DPCH) reacts in slightly acidic (0.0001–0.001 M H2SO4 or pH 4.0–5.5) 50% acetonic media with vanadium (V) to give a red–violet chelate which has an absorption maximum at 531 nm. The average molar absorption coefficient and Sandell’s sensitivity were found to be 4.23×104 l mol−1 cm−1 and 10 ng cm−2 of Vv, respectively. Linear calibration graph were obtained for 0.1–30 μg ml−1 of Vv: the stoichiometric composition of the chelate is 1:3 (V: DPCH). The reaction is instantaneous and absorbance remain stable for 48 h. The interference from over 50 cations, anions and complexing agents has been studied at 1 μg ml−1 of Vv. The method was successfully used in the determination of vanadium in several standard reference materials (alloys and steels), environmental waters (potable and polluted), biological samples (human blood and urine), soil samples, solution containing both vanadium (V) and vanadium (IV) and complex synthetic mixtures. The method has high precision and accuracy (s=±0.01 for 0.5 μg ml−1).  相似文献   

10.
A spectrofluorimetric method to determine levofloxacin is proposed and applied to determine the substance in tablets and spiked human urine and serum. The fluorimetric method allow the determination of 20–3000 ng ml−1 of levofloxacin in aqueous solution containing acetic acid–sodium acetate buffer (pH 4) with λexc=292 and λem=494 nm, respectively. Micelle enhanced fluorescence improves the sensibility and allows levofloxacin direct measurement in spiked Human serum (5 μg ml−1) and urine (420 μg ml−1), in 8 mM sodium dodecyl sulphate solutions at pH 5.  相似文献   

11.
Determination of glyphosate by ion chromatography   总被引:4,自引:0,他引:4  
An ion chromatography system for the determination of glyphosate was described. Ion chromatograph was carried out by suppressed conductivity detection (DX-100). The eluent contained 9 mmol l−1 Na2CO3 and 4 mmol l−1 NaOH. The detection limit was 0.042 μg ml−1 (S/N=3). The relative standard deviation was 1.99% and the correlation coefficient of the calibration curve for area was 0.9995. The linear range was 0.042100 μg ml−1. Common inorganic ion and organic acids did not interfere. The recovery was 96.4103.2%. The method was simple, rapid, reliable and inexpensive.  相似文献   

12.
Li S  Deng N  Zheng F  Huang Y 《Talanta》2003,60(6):1097-1104
The adsorption of W (VI) on different metal oxides (TiO2, ZrO2), different crystal form of TiO2 (rutile, anatase) with high surface areas was studied and compared under different pH. A novel method for preconcentration of W (VI) with nanometer size titanium dioxide (rutile) and determination by spectrophotometry has been developed. W (VI) was selective adsorbed on 100 mg TiO2 from 250 ml solution at pH 3.0, then eluted by 2 ml 9 mol l−1 sodium hydroxide solution. The eluent was adjusted to 5 ml pH 0 solution, added 0.5 ml 12 mol l−1 HCl, 0.3 ml 3% TiCl3, 0.3 ml 50% NH4SCN, stirred for 20 min, used for the analysis of W (VI) by measuring the absorbance at 402 nm with spectrophotometry, based on the chromogenic reaction between the W (VI) and the mixture of TiCl3 and NH4SCN. This method gave a concentration enhancement of 50 for 250 ml sample, eliminated the sizable interferences on direct determination with spectrophotometry. Detection limits (3σ, n=11) of 1.2 ng ml−1, relative standard deviation of 2.3% at 10 ng ml−1 level were obtained. The method was applied to determine the W (VI) in hot spring water, river water, tap water and stream sediment. Analytical recoveries of W (VI) added to samples were 98–101%.  相似文献   

13.
A catalytic photometric method was developed for the determination of sub-nanogram levels of cobalt. The method is based on the catalytic effect of cobalt(II) on the oxidative coupling of 3-methyl-2-benzothiazolinone hydrazone with N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3,5-dimethoxyaniline (DAOS) to form a colored dye (λmax=525 nm) in the presence of hydrogen peroxide. In this reaction system, 1,2-dihydroxybenzene-3,5-disulfonate (Tiron) acted as an effective activator for the catalysis of cobalt(II). Variation of reaction time between 5 and 10 min allows the determination range to be extended from 0.01 to 1.0 ng ml−1. The reaction system can also be successfully adapted to flow-injection analysis (FIA). The dynamic range of the proposed flow-injection method was 0.01–1.0 ng ml−1 and detection limit (signal/noise, S/N=3) was 5 pg ml−1 at a sampling rate of 30 h−1. Manual and flow-injection methods were applied to the direct determination of cobalt in pepperbush as a standard material.  相似文献   

14.
A simple, precise and rapid reversed-phase HPLC method was developed for the simultaneous estimation of acetaminophen, ibuprofen and chlorzoxazone in formulations. The method was carried out on a Kromasil® C8 column using a mixture of 0.2% triethylamine:acetonitrile (adjusted to pH 3.2 using dilute orthophosphoric acid), and detection was carried out at 215 nm using ketoprofen as internal standard. All these drugs showed linearity in the range of 2–10 μg ml−1, and limits of quantification was found to be 10, 50 and 20 ng ml−1 for acetaminophen, ibuprofen and chlorzoxazone, respectively.  相似文献   

15.
Wang J  Zhang C  Wang H  Yang F  Zhang X 《Talanta》2001,54(6):146-1193
A simple, fast chemiluminescence (CL) flow-injection method based on the reaction of luminol with H2O2 in the presence of a cationic surfactant (cyltrimethylammonium bromide, CTMAB) has been described for the direct determination of dichlorvos pesticide (DDVP). Under the optimal conditions, the CL intensity was linear to the DDVP concentration in the range of 0.02–3.1 μg ml−1 (r=0.9998, n=10). The relative standard deviation was 3.4% at 0.35 μg ml−1 (n=10), with a detection limit (3σ) of 0.008 μg ml−1 DDVP. The possible reaction mechanism was also discussed. This method has been successfully applied to the determination of trace DDVP residue in vegetable sample and results have been compared with that of the UV method.  相似文献   

16.
Room temperature magnetic circular dichroism spectra have been obtained for MoS2−4, MoO2−4, WS2−4, ReS4, VS3−4, VO3−4 and OsO4 through their first and second charge-transfer bands. These measurements demonstrate that the band at longest wavelength (ν1 band) must be assigned to a t1 → 2e transition for all the compounds investigated.  相似文献   

17.
A highly sensitive and selective method is described for the determination of trace amounts of nitrite based on its effect on the oxidation of carminic acid with bromate. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of carminic acid at 490 nm after 3 min of mixing the reagents. The optimum reaction conditions were 1.8×10−1 mol l−1 H2SO4, 3.8×10−3 mol l−1 KBrO3, and 1.2×10−4 mol l−1 carminic acid at 30°C. By using the recommended procedure, the calibration graph was linear from 0.2 to 14 ng ml−1 of nitrite; the detection limit was 0.04 ng ml−1; the R.S.D. for six replicate determinations of 6 ng ml−1 was 1.7%. The method is mostly free from interference, especially from large amounts of nitrate and ammonium ions. The proposed method was applied to the determination of nitrite in rain and river water.  相似文献   

18.
The enthalpy of mixing of three liquid mixtures of NaF and NaMgF3 has been measured by drop calorimetry and was found to be negative. This energy release is attributed to a change in the equilibrium

Mg1/4[MgF2−4]3/4+f å MgF2−4 to the formation of complex MgF2−4-ions. A ΔHM diagram for the system NaF-MgF2 up to 50 mol % MgF2 has been constructed.  相似文献   


19.
Li B  Zhang Z  Liu W 《Talanta》2001,55(6):1097-1102
A novel chemiluminescence (CL) flow system for the determination of chlortetracycline is described. It is based on the direct CL reaction of chlortetracycline and [Cu(HIO6)2]5− in KOH medium. The unstable [Cu(HIO6)2]5− was on-line electrogenerated by constant-current electrolysis. The CL intensity was linear with chlortetracycline concentration in the range of 0.1–100 μg ml−1. The determination limit was 5.3×10−8 g ml−1. The whole process could be completed in 1 min. The proposed method is suitable for automatic and continuous analysis, and has been applied satisfactorily to analysis of chlortetracycline in biological fluid.  相似文献   

20.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号