首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple HPLC approach has been successfully established for the sensitive determination of six biogenic amines (BAs) in food samples. The method involves derivatization with 3-(4-chlorobenzoyl)-quinoline-2-carboxaldehyde newly synthesized as a new fluorogenic reagent followed by LC isocratic elution mode. The optimization of both derivatization and separation conditions is carefully studied. Related analyses of the eluted compounds, in the presence of MeOH/THF/H(2)O (78:2.5:19.5 v/v/v) as a mobile phase containing 8 mM, pH 6.0 phosphate buffer solution, have been carried out on a C(18) column. The LOD (S/N = 3) of 2.5 nM, RSD value from 1.0 to 5.1% in peak areas, and good response linearity (R(2) >0.9936) are provided with fluorescence detection at lambda(ex)/lambda(em) = 480/545 nm. Obviously, recovery ranging from 95 to 107% in this method demonstrates its accuracy for determination of histamine, tyramine, 2-phenylethylamine, putrescine, cadaverine, and spermidine in the storage fish sample. Thus, the present method could be developed to monitor BAs in fish, cucumber, and spinach samples.  相似文献   

2.
o-Phthalaldehyde (OPA) derivatives of eight biogenic amines were stabilized at 5 degrees C by forming inclusion complexes with methyl-beta-cyclodextrin (MBCD). The derivatives were separated and detected by cyclodextrin-modified capillary electrophoresis (CE) with UV or laser-induced fluorescence (LIF) detection. Using a borate buffer, pH 9.0 consisting of ethanol and a mixture of negatively charged sulfobutylether-beta-cyclodextrin and neutral MBCD, baseline separation of the eight OPA derivatives was achieved within 25 min with high separation efficiencies. The detection limits (S/N=3) obtained by UV and LIF detection were determined to be 10 microM and 0.250 microM, respectively. Glutamic acid was added after the initial derivatization step to neutralize residual OPA which otherwise caused a significant interference, particularly when analysis was performed around the detection limit of the OPA derivatives. Important biogenic amines in fish, wine and urine were then derivatized and determined by CE-LIF. In the case of sole and rainbow trout, the results obtained were validated by an enzymatic assay using putrescine oxidase.  相似文献   

3.
刘翻  高方圆  唐涛  孙元社  李彤  张维冰 《色谱》2013,31(11):1112-1115
通过色谱条件和衍生条件的优化,建立了微量胺类物质的高效液相色谱-激光诱导荧光检测分析方法。该方法灵敏度高,在优化的条件下分析亚精胺、腐胺和组胺,检出限达到10-10 mol/L数量级,且稳定性好。连续进样5次,3种生物胺保留时间的RSD(n=5)小于0.3%,峰面积的RSD(n=5)小于3%,平均加标回收率为94.99%~104.7%。将该方法应用于实际水样中3种生物胺的检测及7种茶叶茶水中胺类物质的分析,取得了良好的结果。该方法灵敏度高,稳定性好,可用于水样中微量胺类物质的分析。  相似文献   

4.
We have developed a method for the determination of histamine (His), tyramine (Tyr) and cadaverine (Cad) using high-performance capillary electrophoresis with fluorescence detection and an on-line mode in-capillary derivatization with o-phthalaldehyde (OPA)/N-acetylcysteine (NAC) as derivatization reagent. HPCE separation of His, Tyr, Cad and Spermidine (Spd) was influenced by sodium dodecyl sulfate (SDS) and phosphate–borate buffer (pH 10) concentration. After optimization of the method, a 4-component amine solution containing His, Tyr, Cad and Spd could be separated and detected by using 2 mM OPA/NAC–20 mM SDS–20 mM phosphate–borate buffer (pH 10) as a run buffer at an applied voltage of 25 kV, with detection at 340 nm. Although a practical sensitivity level can be obtained by using fluorescence detection (λex=340 nm, λem=450 nm) instead of ultraviolet–visible detection, Spd was not detected at all. The precision (relative standard deviation; n=15) of this method for within- and between-days is less than 2.9% (peak area) and 1.3% (migration time), respectively. Linearity for these analytes, except for Spd, was established over a concentration range of 0.02 to 1.00 μmol/ml and detection limits (S/N=3) range from 1 nmol/ml for His and Tyr to 5 nmol/ml for Cad. The determination of His and some amines in aging raw fish meat samples (room temperature, 48 h) was carried out using the described method with fluorescence detection.  相似文献   

5.
A sensitive method of analysis for biogenic amines, putrescine, cadaverine, histamine and an amino acid precursor, histidine is described herein using ion-exchange chromatography and condensation nucleation light scattering detection. The method was successfully used for the analysis of biogenic amines in fish samples. The method offers a number of advantages: fast elution of analytes with no need for mobile phase conductivity suppression, no derivatization and no electrochemical activity for the analyte's detection. The 3 sigma detection limits for these compounds were found to range from 8 to 20 ng/ml.  相似文献   

6.
In this work, a facile and environmentally friendly solid‐phase microextraction assay based on on‐fiber derivatization coupled with gas chromatography and mass spectrometry was developed for determining four nonvolatile index biogenic amines (putrescine, cadaverine, histamine, and tyramine) in fish samples. In the assay, the fiber was firstly dipped into a solution with isobutyl chloroformate as derivatization reagent and isooctane as extraction solvent. Thus, a thin organic liquid membrane coating was developed. Then the modified fiber was immersed into sample solution to extract four important bioamines. Afterwards, the fiber was directly inserted into gas chromatography injection port for thermal desorption. 1,7‐Diaminoheptane was employed as internal standard reagent for quantification of the targets. The limits of detection of the method were 2.98–45.3 μg/kg. The proposed method was successfully applied to the detection of bioamines in several fish samples with recoveries ranging 78.9–110%. The organic reagent used for extraction was as few as microliter that can greatly reduce the harm to manipulator and environment. Moreover, the extraction procedures were very simple without concentration and elution procedures, which can greatly simplify the pretreatment process. The assay can be extended to the in situ screening of other pollutant in food safety by changing the derivatization reagent.  相似文献   

7.
A selective and sensitive fluorometric determination method for native fluorescent peptides has been developed. This method is based on intramolecular fluorescence resonance energy transfer (FRET) detection in a liquid chromatography (LC) system following precolumn derivatization of the amino groups of tryptophan (Trp)-containing peptides. In this detection process, we monitored the FRET from the native fluorescent Trp moieties (donor) to the derivatized fluorophore (acceptor). From a screening study involving 10 fluorescent reagents, we found that o-phthalaldehyde (OPA) generated FRET most effectively. The OPA derivatives of the native fluorescent peptides emitted OPA fluorescence (445 nm) through an intramolecular FRET process when they were excited at the excitation maximum wavelength of the Trp-containing peptides (280 nm). The generation of FRET was confirmed through comparison with the analysis of a non-fluorescent peptide (C-reactive protein fragment (77 - 82)) performed using LC and a three-dimensional fluorescence detection system. We were able to separate the OPA derivatives of the Trp-containing peptides when performing LC on a reversed-phase column. The detection limits (signal-to-noise ratio = 3) for the Trp-containing peptides, at a 20-microL injection volume, were 41 - 180 fmol. The sensitivity of the intramolecular FRET-forming derivatization method is higher than that of the system that takes advantage of the conventional detection of OPA derivatives. Moreover, native non-fluorescent amines and peptides in the sample monitored at FRET detection are weaker than those of conventional fluorescence detection.  相似文献   

8.
An improved sensitive method was developed and validated for the determination of histamine in food samples by using automated on-line pre-column derivatization coupled with high performance liquid chromatography and fluorescence detection (HPLC-FLD). o-Phthaldialdehyde (OPA) was adopted as derivatization reagent, and a "sandwich" (OPA+histamine+OPA) aspiration mode for the automated on-line pre-column derivatization was found to efficiently enhance the method sensitivity and precision. Histamine in food samples was efficiently extracted with a methanol-phosphate buffer solution (50:50, v/v) at 60 degrees C for 30 min, and purified with Waters Oasis MCX solid-phase extraction (SPE) cartridge. The limit of quantification for this method is 0.2 mg/kg, which is very sensitive for histamine determination. With the "sandwich" injection program, 3.7% of relative standard deviation (RSD) was achieved by five replicative determinations of a sample blank spiked with 0.25 mg/kg histamine standard. Histamine in food samples such as fumitory skipjack and mackerel was analyzed with relative recoveries over 95% at spiking level of 150 mg/kg, as well as canned tuna fish and cheese with relative recoveries up to 98% at spiking levels of 0.50 and 5.0 mg/kg, respectively. The proposed method was validated with a sample from the Food Analysis Performance Assessment Scheme (FAPAS) as a standard certified material; and the results (140+/-6 mg/kg) agreed well with the assigned value (139 mg/kg).  相似文献   

9.
A method suitable for the determination of eight biogenic amines (histamine, tyramine, phenylethylamine, tryptamine, cadaverine, putrescine, spermidine and spermine) in wines has been developed. The method involves derivatization of the amines by treatment with dabsyl chloride, after which the derivates were analysed by reversed-phase liquid chromatography with gradient elution and spectrophotometric detection at 446 nm. Different variables affecting separation were optimized. Validation of the method included calibration experiments, the addition of standards amines for the determination of recovery and repeatability tests. Good linearity of the responses was obtained up to 500 microg l(-1), except for putrescine (up to 2100 microg l(-1)). The detection limits ranged between 10 and 60 microg l(-1) for standard solutions. The method was successfully applied to the analysis of five Spanish wines.  相似文献   

10.
A simple and rapid method has been developed for the determination of biogenic amines in lake water using micellar electrokinetic chromatography with fluorescence detection. Separation of fluorescamine derivatized biogenic amines was accomplished by using borate buffer of pH 9.5 containing 40 mM of sodium dodecyl sulphate. The method has been optimized with respect to fluorescamine concentration, reaction pH, reaction time, separation voltage and injection time. Detection was performed by using UG-11 excitation filter and 495 nm emission filter. The proposed method for histamine, tyramine and dopamine allowed their separation within 2 min with detection limits in nM range. The interday and intraday reproducibility of peak areas were less than 6.5%. Recovery of spiked samples was 95.76–116.31%.  相似文献   

11.
以4-氟-7-硝基-2,1,3-苯并氧杂恶二唑(NBD-F)为衍生化试剂,建立了食品中5种痕量生物胺(色胺、组胺、酪胺、亚精胺、精胺)的毛细管电色谱-激光诱导荧光检测(CEC-LIF)分析方法。采用50 mmol/L硼酸盐缓冲溶液(pH 8.0)作为衍生介质,在75℃条件下对生物胺进行衍生化反应25 min。生物胺衍生产物的最优色谱条件:固定相为C18毛细管电色谱柱,流动相为乙腈-乙酸铵(20 mmol/L,pH 8.0)(75∶25,v/v),辅助压力为6.9 MPa,分离电压为-8 kV,流速为0.03 mL/min。实验结果表明,生物胺的检出限(LOD,S/N=3)为0.1~1.0μg/L,加标回收率为78.3%~113.9%。该方法可成功用于加工和发酵食品中生物胺的测定,结果与传统HPLC法的检测结果无显著性差异,且检出限更低、分析速度更快,对于食品中痕量污染物的残留监测具有应用价值。  相似文献   

12.
A reversed-phase high-performance liquid chromatographic method based on chemical derivatization with fluorescence detection has been developed for analyzing biogenic amines in food and environmental samples. A BODIPY-based fluorescent reagent, 1,3,5,7-tetramethyl-8-(N-hydroxysuccinimidyl butyric ester)-difluoroboradiaza-s-indacene (TMBB-Su), was employed for the derivatization of these biogenic amines at 20 °C for 20 min in pH 7.20 borate buffer after careful investigation of the derivatization conditions including reagent concentration, buffer solution, reaction temperature and reaction time. Separation of biogenic amines with gradient elution was conducted on a C8 column with methanol-tetrahydrofuran-water as mobile phase. The detection limits were obtained in the range from 0.1 to 0.2 nM (signal-to-noise=3). This procedure has been validated using practical samples. The study results demonstrated a potential of employing high-performance liquid chromatography (HPLC) with 1,3,5,7-tetramethyl-8-(N-hydroxysuccinimidyl butyric ester)-difluoroboradiaza-s-indacene labeling as a tool for quantitative analysis of biogenic amines involved in various matrices.  相似文献   

13.
A liquid chromatography (LC) method is described for the easy determination of the biogenic diamines putrescine (PUT) and cadaverine (CAD) in canned tuna, frozen tuna loin, fresh mahimahi fillet, frozen raw shrimp, cooked lump crabmeat, and fresh and cold-smoked salmon. The method is also a useful screen for histamine (HTA). The method involves homogenization of fish tissue, extraction of biogenic amines into borate-trichloroacetic acid solution, centrifugation, and derivatization of supernatant with 1-pyrenebutanoic acid succinimidyl ester. The derivatized diamine species allow for the intramolecular excimer fluorescence of the pyrene moiety at a higher emission wavelength than is possible for the endogenous tissue monoamines, thus providing visual specificity of detection. All seafood species were fortified with 0.5, 1.0, 5.0, 10.0, and 15.0 microg/g (ppm) of PUT and CAD. Determination was based on standard graphs for PUT and CAD using peak areas with standard solutions equivalent to 0.375, 1.0, 5.0, 10.0, and 20.0 ppm in tissue. A set of five matrix controls (unfortified seafood tissue) were also analyzed; endogenous PUT was found in all samples except the canned tuna, and CAD found only in the shrimp, crab, and cold-smoked salmon. The background amines were thus subtracted prior to determining spike recovery. The intra-assay average recoveries ranged from 71 to 94% across species and spike levels.  相似文献   

14.
Aqueous sulfuric acid can be used as the mobile phase in cation ion chromatography to separate the three biogenic amines, putrescine, cadaverine, and histamine, from fish. Various concentrations of aqueous sulfuric acid were investigated to optimize the separation of these three biogenic amines. Aqueous sulfuric acid (5.0 mM) was found to be optimum for the separation and was used to determine the three biogenic amines in fish. The LOQ, defined as the lowest level of the standard calibration curve, was 0.055 ppm (equivalent to 0.55 microg/g sample) for putrescine, 0.05 ppm (equivalent to 0.5 microg/g sample) for cadaverine, and 1.0 ppm (equivalent to 10 microg/g sample) for histamine. From statistical analysis of the LOQ, the method detection limit was 0.003 ppm for putrescine, 0.009 ppm for cadaverine, and 0.16 ppm for histamine. For sample preparation, the fish was composited, homogenized in methanol-water (75 + 25, v/v), incubated for 15 min at 60 degrees C, and centrifuged. The sample solution was micron-filtered before injection. The mobile phase flow rate was 0.8 mL/min under isocratic conditions at room temperature (15-25 degrees C). The three biogenic amines were separated in the order of increasing retention time, i.e., putrescine, cadaverine, and histamine, within 30 min. The chromatograms showed complete peak separation of the three amines regardless of the difference in fish matrixes.  相似文献   

15.
Cao L  Wang H  Ma M  Zhang H 《Electrophoresis》2006,27(4):827-836
An MEKC-LIF method using 6-oxy-(N-succinimidyl acetate)-9-(2'-methoxy-carbonyl) fluorescein (SAMF) newly synthesized in our lab as a labeling reagent for the separation and determination of eight typical biogenic amines was proposed. After careful study of the derivatization condition such as pH value, reagent concentration, temperature, and reaction time, derivatization reaction was accomplished as quickly as 10 min with stable yield. Optimal separation of SAMF-labeled amines was achieved with a running buffer (pH 9.3) containing 30 mM boric acid, 25 mM SDS, and 20% v/v ACN. The proposed method allowed biogenic amines to be determined with LODs as low as 0.25-2.5 nmol/L and RSD values from 0.4 to 4.5%. The present method has been successfully used to monitor biogenic amines in HeLa cells and fish samples. This study exploits the potential of MEKC-LIF with SAMF labeling as a tool for monitoring biogenic amines involved in complex physiological and behavioral processes in various matrices.  相似文献   

16.
Zhang N  Wang H  Zhang ZX  Deng YH  Zhang HS 《Talanta》2008,76(4):791-797
An effective approach was proposed to the derivatization of seven biogenic amines using 3-(4-fluorobenzoyl)-2-quinolinecarboxaldehyde (FBQCA) as a fluorogenic reagent. The sensitive determinations of these derivatives were achieved by micellar electrokinetic capillary chromatography (MEKC) with laser-induced fluorescence (LIF) detection. The derivatization and electrophoretic conditions have been optimized. A running buffer was composed of mixtures of 25 mM pH 9.5 boric acid, 25 mM SDS, and 27% ACN. At 25 °C and 22.5 kV, the baseline separation of the derivatives was accomplished in 13 min. The detection limit (S/N = 3) was found as low as 0.4 nM. The proposed method was validated by the linearity of two orders magnitude and correlation coefficient in the range 0.9969–0.9998. Also, the procedure was successfully applied to the determination of biogenic amines in soy sauce, fish and wine samples.  相似文献   

17.
A capillary electrophoresis-electrospray mass spectrometry (CE-ESI-MS) method for the separation and determination of nine biogenic amines is proposed. Operational variables, such as the voltage, temperature, sheath liquid composition, flow-rate, and MS parameters, were optimized. Samples are injected in the hydrodynamic mode into a 75 cm x 50 microm ID coated capillary and separated by using 25 mM citric acid at pH 2.0. Heptylamine is used as internal standard. The experimental setup includes a flow manifold coupled to the CE system for automatic insertion of samples into the CE vials. The proposed method allows amines to be determined with limits of detection from 0.018 to 0.09 microg x mL(-1) and relative standard deviation (RSD) values from 2.4% to 5.0% (except 6.8% for histamine). The method was successfully used to determine biogenic amines in red and white wines.  相似文献   

18.
This work presents a RP-HPLC method for the simultaneous quantification of free amino acids and biogenic amines in liquid food matrices and the results of the application to honey and wine samples obtained from different production processes and geographic origins. The developed methodology is based on a pre-column derivatization with o-phthaldialdehyde carried out in the sample injection loop. The compounds were separated in a Nova-Pack RP-C(18) column (150 mm x 3.9 mm, 4 microm) at 35 degrees C. The mobile phase used was a mixture of phase A: 10 mM sodium phosphate buffer (pH 7.3), methanol and tetrahydrofuran (91:8:1); and phase B: methanol and phosphate buffer (80:20), with a flow rate of 1.0 ml/min. Fluorescence detection was used at an excitation wavelength of 335 nm and an emission wavelength of 440 nm. The separation and quantification of 19 amino acids and 6 amines was carried out in a single run as their OPA/MCE derivatives elute within 80 min, ensuring a reproducible quantification. The method showed to be adequate for the purpose, with an average RSD of 2% for the different amino acids; detection limits varying between 0.71 mg/l (Asn) and 8.26 mg/l (Lys) and recovery rates between 63.0% (Cad) and 98.0% (Asp). The amino acids present at the highest concentration in honey and wine samples were phenylalanine and arginine, respectively. Only residual levels of biogenic amines were detected in the analysed samples.  相似文献   

19.
A method for the screening of biogenic amines in waters, whose presence at some concentration levels potentially cause adverse effects on humans, was developed for the first time. A suitable and easy to operate system, with low reagent consumption was devised. The proposed flow-based system was divided into two analytical parts, preconcentration and derivatization of the biogenic amines. Solid phase extraction, using a Chelex 100 resin, was the newly chosen strategy for preconcentration of the analyte and also removal of possible matrix interferences. Fluorescamine was used as derivatization reagent for biogenic amines followed by fluorimetric detection. The influence of different sorbent materials for preconcentration and flow system parameters such as pH of standards and buffer, composition of the eluent solution, flow-rates, standard/sample volume, were studied. The interference of ammonia was assessed, and no interference was observed. The limits of detection and quantification were 1.7 and 5.6 µmol L?1, respectively. The developed system was applied to water samples and the recovery results were 98 ± 7%.  相似文献   

20.
Some biogenic amines, such as putrescine, cadaverine, spermidine and histamine, have been found to be useful as quality indices for the decomposition of fish, so research on the simultaneous analysis of various biogenic amines in food is of interest and importance. The intake of histamine may cause an allergic intoxication known as "scombroid poisoning" while secondary biogenic amines can potentiate the toxicity of histamine and in addition can react with nitrite to form carcinogenic nitrosamines. A new method for the simultaneous determination of underivatized biogenic amines based on ion-exchange chromatography with conductivity detector has been developed. The proposed method offers a number of advantages over previous pulsed amperometric detection and integrated pulsed amperometric detection methods such as simpler extraction procedure and sharp peaks. Separations were performed on a new low hydrophobic weak cation-exchange analytical column. This technique is simple, rapid and useful for routine checks in repetitive analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号