首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The correlation between phase structures and surface acidity of Al2O3 supports calcined at different temperatures and the catalytic performance of Ni/Al2O3 catalysts in the production of synthetic natural gas(SNG) via CO methanation was systematically investigated. A series of 10 wt% NiO/Al2O3 catalysts were prepared by the conventional impregnation method, and the phase structures and surface acidity of Al2O3 supports were adjusted by calcining the commercial γ-Al2O3 at different temperatures(600–1200 C). CO methanation reaction was carried out in the temperature range of 300–600 C at different weight hourly space velocities(WHSV = 30000 and 120000 mL·g-1h-1) and pressures(0.1 and 3.0 MPa). It was found that high calcination temperature not only led to the growth in Ni particle size, but also weakened the interaction between Ni nanoparticles and Al2O3 supports due to the rapid decrease of the specific surface area and acidity of Al2O3 supports. Interestingly, Ni catalysts supported on Al2O3 calcined at 1200 C(Ni/Al2O3-1200) exhibited the best catalytic activity for CO methanation under different reaction conditions. Lifetime reaction tests also indicated that Ni/Al2O3-1200 was the most active and stable catalyst compared with the other three catalysts, whose supports were calcined at lower temperatures(600, 800 and 1000 C). These findings would therefore be helpful to develop Ni/Al2O3 methanation catalyst for SNG production.  相似文献   

2.
Hydrotalcite precursors of La modified Ni-Al2O3 and Ni-SiO2 catalysts prepared by co-precipitation method and the catalytic activities were examined for the production of COx-free H2 by CH4 decomposition. Physico-chemical characteristics of fresh, reduced and used catalysts were evaluated by XRD, TPR and O2 pulse chemisorptions, TEM and BET-SA techniques. XRD studies showed phases due to hydrotalcite-like precursors in oven dried form produced dispersed NiO species upon calcination in static air above 450 C. Raman spectra of deactivated samples revealed the presence of both ordered and disordered forms of carbon. Ni-La-Al2O3catalyst with a mole ratio of Ni : La : Al = 2 : 0.1 : 0.9 exhibited tremendously high longevity with a hydrogen production rate of 1300 molH2 mol 1 Ni. A direct relationship between Ni metal surface area and hydrogen yields was established.  相似文献   

3.
4.
Removal of carbonyl sulfide(COS) from CO2 stream is significant for the production and utilization of food grade CO2. This study investigates the adsorption performance of Ag/NaZSM-5 as adsorbent prepared by incipient wetness impregnation for the removal of COS from a CO2 stream in a fixed-bed adsorption apparatus. Effects of various conditions on the preparation of adsorbent, adsorption and desorption were intensively examined. The results revealed that COS can be removed to below 1×10-9from a CO2stream(1000 ppm COS/CO2) using Ag/NaZSM-5(10 wt% AgNO3) with an adsorption capacity of 12.86 mg·g-1. The adsorbent can be fully regenerated using hot air at 450 C. The adsorption ability remained stable even after eight cycles of regeneration.  相似文献   

5.
The kinetics of propane dehydrogenation and catalyst deactivation over Pt-Sn/Al2O3 catalyst were studied.Performance test runs were carried out in a fixed-bed integral reactor.Using a power-law rate expression for the surface reaction kinetics and independent law for deactivation kinetics,the experimental data were analyzed both by integral and a novel differential method of analysis and the results were compared.To avoid fluctuation of time-derivatives of conversion required for differential analysis,the conversion-time data were first fitted with appropriate functions.While the time-zero and rate constant of reaction were largely insensitive to the function employed,the rate constant of deactivation was much more sensitive to the function form.The advantage of the proposed differential method,however,is that the integration of the rate expression is not necessary which otherwise could be complicated or impossible.It was also found that the reaction is not limited by external and internal mass transfer limitations,implying that the employed kinetics could be considered as intrinsic ones.  相似文献   

6.
Incorporation of strontium into V-Mo alumina-supported catalyst enhanced its performance (increased conversion and selectivity,decreased reducibility and improved stability) in propane oxydehydrogenation to propylene.12.5% Sr loading was shown to be the optimum content to the V-Mo catalyst.The results were supported by various characterization techniques,namely,BET,XRD,SEM,FTIR and TPD.  相似文献   

7.
In this work,syngas methanation over Ni-W/TiO2-SiO2catalyst was studied in a fluidized-bed reactor(FBR)and its performance was compared with a fixed-bed reactor(FIXBR).The effects of main operating variables including feedstock gases space velocity,coke content,bed temperature and sulfur-tolerant stability of 100 h life were investigated.The structure of the catalysts was characterized by XRD,N2adsorptiondesorption and TEM.It is found that under same space velocity from 5000 h 1to 25000 h 1FBR gave a higher CH4yield,lower coke content,and lower bed temperature than those obtained in FIXBR.Ni-W/TiO2-SiO2catalyst possessed excellent sulfur-tolerant stability on the feedstock gases less than 500 ppm H2S in FBR.The carbon deposits formed on the spent catalyst were in the form of carbon fibers in FBR,while in the form of dense accumulation distribution appearance in FIXBR.  相似文献   

8.
The use of some novel and efficient crop nutrient-based superabsorbent hydrogel nanocomposites (SHNCs), is currently becoming increasingly important to improve the crop yield and productivity, due to their water retention properties. In the present study a poly(Acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite was synthesized and its physical properties characterized using Energy Dispersive X-ray (EDX), FE-SEM and FTIR spectroscopic techniques. The effects of different levels of SHNC were studied to evaluate the moisture retention properties of sandy loam soil (sand 59%, silt 21%, clay 19%, pH 7.4, EC 1.92 dS/m). The soil amendment with 0.1, 0.2, 0.3 and 0.4 w/w% of SHNC enhanced the moisture retention significantly at field capacity compared to the untreated soil. Besides, in a separate experiment, seed germination and seedling growth of wheat was found to be notably improved with the application of SHNC. A delay in wilting of seedlings by 5-8 days was observed for SHNC-amended soil, thereby improving wheat plant growth and establishment.  相似文献   

9.
Using FFC-Cambridge Process to prepare Si from SiO2 is a promising method to prepare nanostructured and highly pure silicon for solar cells.However,the method still has many problems unsolved and the controlling effect of the cell voltage on silicon product is not clear.Here we report in this article that nano cluster-like silicon product with purity of 99.95%has been prepared by complete conversion of raw material SiO2,quartz glass plate,using constant cell voltage electrolysis FFC-Cambridge Process.By analysis of XRD,EDS,TEM,HRTEM and ICP-AES as well as the discussion from the thermodynamics calculation,the morphology and components of the product based on the change of cell voltage are clarified.It is clear that pure silicon could be prepared at the cell voltage of 1.7 2.1 V in this reaction system.The silicon material have cluster-like structure which are made of silicon nanoparticles in 20 100 nm size.Interestingly,the cluster-like nano structure of the silicon can be tuned by the used cell voltage.The purity,yield and the energy cost of silicon product prepared at the optimized cell voltage are discussed.The purity of the silicon product could be further improved,hence this method is promising for the preparation of solar grade silicon in future.  相似文献   

10.
CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductively coupled plasma atomic emission spectroscopy,X-ray diffraction,temperature-programmed reduction,field emission scanning electron microscopy and thermo-gravimetric analysis.Over CuOCeO2 catalysts,H2 with low CO content was produced in the whole tested temperature range of 250–450 C.The non-noble metal catalyst 20CuCe showed higher H2production rate than 1%Rh/CeO2 catalyst at 300–400 C and the advantage was more obvious after 20 h testing at400 C.These results further confirmed that CuO-CeO2 catalysts may be suitable candidates for low temperature hydrogen production from ethanol.  相似文献   

11.
Photoelectrochemical measurements were used to study the photoelectrode characteristics of composite nanoparticles composed of fullerene C60 and partially hydrolyzed aluminum phthalocyanine chloride (AlPc). In cyclic voltammetry measurements, the electrodes coated with the composite nanoparticles were found to have photoanodic [electron donor: 2-mercaptoethanol (ME)] and photocathodic (electron acceptor: O2) characteristics similar to those of the vapor-deposited p/n junction electrode. Their photoanodic features were further investigated with respect to the transient photocurrent response to light irradiation and the dependence on ME concentration (under potentiostatic conditions), from which it was noted that there was a decrease in the initial spiky photocathodic current and saturation of the steady-state photoanodic current at a higher ME concentration. Thus, the reaction kinetics was probably dominated by charge transport process. Moreover, external and internal quantum efficiency spectrum measurements indicated that the composite nanoparticles responded to the full spectrum of visible light ( < 880 nm) for both the photoanodic and photocathodic current. The present research will assist comprehension of photocatalytic behavior of the composite nanoparticles.  相似文献   

12.
Mesoporous LiFePO4/C composites containing 80 wt% of highly dispersed LiFePO4 nanoparticles(4-6 nm) were fabricated using bimodal mesoporous carbon(BMC) as continuous conductive networks. The unique pore structure of BMC not only promises good particle connectivity for LiFePO4, but also acts as a rigid nano-confinement support that controls the particle size. Furthermore, the capacities were investigated respectively based on the weight of LiFePO4 and the whole composite. When calculated based on the weight of the whole composite, it is 120 mAh·g-1at 0.1 C of the high loading electrode and 42 mAh·g-1at 10 C of the low loading electrode. The electrochemical performance shows that high LiFePO4 loading benefits large tap density and contributes to the energy storage at low rates, while the electrode with low content of LiFePO4 displays superior high rate performance, which can mainly be due to the small particle size, good dispersion and high utilization of the active material, thus leading to a fast ion and electron diffusion.  相似文献   

13.
The sputtering properties of two representative cluster ion beams in secondary ion mass spectrometry (SIMS), C(60)(+) and Au(3)(+), have been directly compared. Organic thin films consisting of trehalose and dipalmitoylphosphatidylcholine (DPPC) are employed as prototypical targets. The strategy is to make direct comparison of the response of a molecular solid to each type of the bombarding cluster by overlapping the two ion beams onto the same area of the sample surface. The ion beams alternately erode the sample while keeping the same projectile for spectral acquisition. The results from these experiments are important to further optimize the use of cluster projectiles for SIMS molecular depth profiling experiments. For example, Au(3)(+) bombardment is found to induce more chemical damage as well as Au implantation when compared with C(60)(+). Moreover, C(60)(+) is found to be able to remove the damage and the implanted Au effectively. Discussions are also presented on strategies of enhancing sensitivity for imaging applications with cluster SIMS.  相似文献   

14.
Rhombohedral hexametavanadates K4Sr(VO3)6, K4Ba(VO3)6, Rb4 Ba(VO3)6, and Cs4Ba(VO3)6 melt incongruently in the temperature range of 491 to 600°C. Cooling of peritectic melts yields mixtures of compounds typical of M2+O-M2+O-V2O5 systems, far from equilibrium and depending on the cooling kinetics. The vanadate Cs4Ba(VO3)6 undergoes reversible polymorphic transformation at 360°C. All compounds show broad-band luminescence with a maximum of the luminescence spectrum at 490–590 nm with three types of excitation. The vanadates K4Sr(VO3)6 and Rb4Ba(VO3)6 show the highest luminescence intensity at room temperature. The latter is also most efficient at liquid nitrogen temperatures. The luminescence spectra depend on the excitation of vanadates. Three hypotheses were put forward to interpret this finding. The nature of luminescence is attributed to the relaxation of electronic excitation in [VO4]3− structural tetrahedra present in the vanadates. The performance characteristics of luminophores were determined. These luminophores may be promising as X-ray luminescent screens, radioluminescence indicators, and light-emitting diode devices.  相似文献   

15.
The first inorg/organic hybrid complex incorporating the macrocyclic oxamide, of formula [(NiL)2Cu2(μ-NSC)2(NSC)2] (1), (NiL, H2L = 2, 3-dioxo-5,6,14,15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,13-dien), have been synthesized and structurally characterized. The crystals crystallize in the triclinic system, space group P-1, for (1) a = 8.319(3) Å, b = 10.434(4) Å, c = 14.166(5) Å, a = 107.030(5)°, β  =  91.257(5)°, γ = 107.623(5)°. The complex involved both bridging N, S-ligand, and oxamide ligand, C–H?S interactions and NCS → Ni weak coordination interactions making the complex superamolecular.  相似文献   

16.
Measurement of the 3Π-3Π transition of C6H+ in the gas phase near 19486 cm−1 is reported. The experiment was carried out with a supersonic slit-jet expansion discharge using cavity ringdown absorption spectroscopy. Partly resolved P lines and observation of band heads permitted a rotational contour fit. Spectroscopic constants in the ground and excited-state were determined. The density of ions being sampled is merely 2×108 cm−3. Broadening of the spectral lines indicates the excited-state lifetime to be ≈100 ps. The electronic transition of HC6H2+ at 26402 cm−1 assumed to be 1A1-X1A1 in C2v symmetry could not be rotationally resolved.  相似文献   

17.
Dryopteris crassirhizoma is traditionally used as an herbal remedy for various diseases, and has been identified in a previous study as a potential anti-caries agent. In this study, the effect of a methanol extract of D. crassirhizoma on the viability, growth and virulence properties of Streptococcus mutans, a cariogenic dental pathogen, was investigated. In addition, the phytochemical composition of the extract was analyzed. The extract showed bactericidal and bacteriostatic activity against oral bacteria (MIC and MBC of S. mutans: 62.5 and 250 μg/mL, respectively). At two times the MBC, the extract significantly eliminated S. mutans up to 99.9% after 1 h incubation. The extract also dose-dependently reduced growth rates of S. mutans at sub-MIC levels. Furthermore, at sub-MIC levels, virulence properties (acid production, acid tolerance, glucosyltransferase activity and sucrose-dependent adherence) of S. mutans were also inhibited in a dose-dependent manner. GC-MS analysis revealed the presence of mono and disaccharides (44.9%), fatty acids (12.3%) and sugar alcohols (6.8%) in the extract. These data indicate that the extract might be useful for the control of dental caries.  相似文献   

18.
A new molybdophosphate (NH4)8{Mo2VO4[(Mo2VIO6)CH3C(O)(PO3)2]2}·14H2O (1), has been synthesized by the reaction of {Mo2VO4(H2O)6}2+ fragments with 1-hydroxyethylidenediphosphonate (hedp HOC(CH3)(PO3H2)2), and it is characterized by 31P NMR, IR, UV, element analysis, TG and single-crystal X-ray analysis. The structure analysis reveals that the polyoxoanion can be described as two {(Mo2VIO6)(CH3C(O)(PO3)2} units connected by a {Mo2VO4}2+ moiety. In the structure, the six Mo atoms are arranged into a new “W-shaped” structure, which represents a new kind of molybdophosphate.  相似文献   

19.
On the basis of experimental data obtained in the study of glass-formation boundaries in the Al2(SO4)3-HIO3-H2O, Al(IO3)3-Al2(SO4)3-H2O, and Al(IO3)3-HIO3-H2O systems and using geometrical analysis, we predict the positions of glass-formation boundaries in the Al(IO3)3-Al2(SO4)3-HIO3-H2O four-component system along 60, 40, and 25 wt % H2O sections.  相似文献   

20.
A series of twist linear tetranuclear 3d–4f Co 2 III Ln 2 III [Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5)] complexes have been prepared under solvothermal conditions and structurally characterized with Schiff-base ligand 2-(((2-hydroxy-3-methoxyphenyl)methylene)amino)-2-(hydroxymethyl)-1,3-propanediol (H4L). The two central Co ions are linked by two alkoxyl oxygen atoms, and one Ln ion lying above and the other below the Co–Co dimer, form a twist linear array. The magnetic susceptibility studies reveal antiferromagnetic or ferromagnetic behaviour, whilst dynamic magnetic studies indicate no slow magnetic relaxation for these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号