We also present a result of orbital instability of snoidal standing wave solutions to the Klein–Gordon equation
uttuxx+|u|2u=0.
The main tool to obtain these results is the classical Grillakis, Shatah and Strauss' theory in the periodic context.  相似文献   

20.
On existence and nonexistence of global solutions of Cauchy–Goursat problem for nonlinear wave equations     
O. Jokhadze   《Journal of Mathematical Analysis and Applications》2008,340(2):1033-1045
We consider the Cauchy–Goursat initial characteristic problem for nonlinear wave equations with power nonlinearity. Depending on the power of nonlinearity and the parameter in an equation we investigate the problem on existence and nonexistence of global solutions of the Cauchy–Goursat problem. The question on local solvability of the problem is also considered.  相似文献   

  首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The normal mode instability study of a steady Rossby‐Haurwitz wave is considered both theoretically and numerically. This wave is exact solution of the nonlinear barotropic vorticity equation describing the dynamics of an ideal fluid on a rotating sphere, as well as the large‐scale barotropic dynamics of the atmosphere. In this connection, the stability of the Rossby‐Haurwitz wave is of considerable mathematical and meteorological interest. The structure of the spectrum of the linearized operator in case of an ideal fluid is studied. A conservation law for perturbations to the Rossby‐Haurwitz wave is obtained and used to get a necessary condition for its exponential instability. The maximum growth rate of unstable modes is estimated. The orthogonality of the amplitude of a non‐neutral or non‐stationary mode to the Rossby‐Haurwitz wave is shown in two different inner products. The analytical results obtained are used to test and discuss the accuracy of a numerical spectral method used for the normal mode stability study of arbitrary flow on a sphere. The comparison of the numerical and theoretical results shows that the numerical instability study method works well in case of such smooth solutions as the zonal flows and Rossby‐Haurwitz waves. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

2.
In this article, we propose an exponential wave integrator sine pseudospectral (EWI‐SP) method for solving the Klein–Gordon–Zakharov (KGZ) system. The numerical method is based on a Deuflhard‐type exponential wave integrator for temporal integrations and the sine pseudospectral method for spatial discretizations. The scheme is fully explicit, time reversible and very efficient due to the fast algorithm. Rigorous finite time error estimates are established for the EWI‐SP method in energy space with no CFL‐type conditions which show that the method has second order accuracy in time and spectral accuracy in space. Extensive numerical experiments and comparisons are done to confirm the theoretical studies. Numerical results suggest the EWI‐SP allows large time steps and mesh size in practical computing. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 266–291, 2016  相似文献   

3.
We propose an extended optimal velocity model applicable to cooperative driving control system by considering the headway of arbitrary number of cars that precede and the relative velocity. The stability condition of the extended model is obtained by using the linear stability theory. The modified Korteweg-de Vries (mKdV) equation is derived to describe the traffic behavior near the critical point by applying the nonlinear analysis. Thus the traffic jams can be described by the kink–antikink density wave which is the solution of the mKdV equation. The simulation results confirm the analytical results and show that the traffic jams are suppressed more efficiently with considering not only the headway of more vehicles ahead but also the relative velocity.  相似文献   

4.
This paper is devoted to the study of the nonlinear stability of the composite wave consisting of a rarefaction wave and a viscous contact discontinuity wave of the non‐isentropic Navier–Stokes–Poisson system with free boundary. We first construct the composite wave through the quasineutral Euler equations and then prove that the composite wave is time asymptotically stable under small perturbations for the corresponding initial‐boundary value problem of the non‐isentropic Navier–Stokes–Poisson system. Only the strength of the viscous contact wave is required to be small. However, the strength of the rarefaction wave can be arbitrarily large. In our analysis, the domain decomposition plays an important role in obtaining the zero‐order energy estimates. By introducing this technique, we successfully overcome the difficulty caused by the critical terms involved with the linear term, which does not satisfy the quasineural assumption for the composite wave. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
6.
This paper studies the stability of the rarefaction wave for Navier–Stokes equations in the half‐line without any smallness condition. When the boundary value is given for velocity ux = 0 = u? and the initial data have the state (v+, u+) at x→ + ∞, if u?<u+, it is excepted that there exists a solution of Navier–Stokes equations in the half‐line, which behaves as a 2‐rarefaction wave as t→ + ∞. Matsumura–Nishihara have proved it for barotropic viscous flow (Quart. Appl. Math. 2000; 58:69–83). Here, we generalize it to the isentropic flow with more general pressure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the qualitative behavior and exact travelling wave solutions of the Zhiber–Shabat equation are studied by using qualitative theory of polynomial differential system. The phase portraits of system are given under different parametric conditions. Some exact travelling wave solutions of the Zhiber–Shabat equation are obtained. The results presented in this paper improve the previous results.  相似文献   

8.
Using analysis in frequency space and Fourier methods, we establish that the global solution to the three‐dimensional incompressible periodic Navier–Stokes equation for initial data in the critical Sobolev space decays exponentially fast to zero, and it is exponentially stable as time goes to infinity as soon as the initial data (hence the solution) are mean free; otherwise, the difference to the average does so. Furthermore, we prove that any global nonmean‐free solution vanishes as time goes to infinity, and it is globally exponentially stable. The main tools are the energy methods, the Friedrich's approximating schema, and a crucial change of function that depends explicitly on time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the parabolic–hyperbolic system of linear thermoelasticity with variable coefficients is transformed into a system of two coupled equations. We discuss first the conditions which govern this separation in the case of a system of two coupled equations for which a general result on the separability is formulated. It is then shown that the explicit traveling wave solutions are obtained in the exact form.  相似文献   

10.
In this paper, we devise a simple way to explicitly construct the Riemann theta function periodic wave solution of the nonlinear partial differential equation. The resulting theory is applied to the Hirota–Satsuma shallow water wave equation. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function. We obtain the one‐periodic and two‐periodic wave solutions of the equation. The relations between the periodic wave solutions and soliton solutions are rigorously established. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this article, we consider a three‐dimensional Navier–Stokes–Voight model with memory where relaxation effects are described through a distributed delay. We prove the existence of uniform global attractors , where ? ∈ (0,1) is the scaling parameter in the memory kernel. Furthermore, we prove that the model converges to the classical three‐dimensional Navier–Stokes–Voight system in an appropriate sense as ? → 0. In particular, we construct a family of exponential attractors Ξ? that is robust as ? → 0. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
We prove the existence of the wave operator for the system of the massive Dirac–Klein–Gordon equations in three space dimensions x∈ R 3 where the masses m, M>0. We prove that for the small final data , (?, ?)∈ H 2 + µ, 1 × H 1 + µ, 1, with and , there exists a unique global solution for system (1) with the final state conditions Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper we study the Navier–Stokes boundary‐initial value problem in the exterior of a rotating obstacle, in two and three spatial dimensions. We prove the local in time existence and uniqueness of strong solutions. Moreover, we show that the solutions are global in time, in two spatial dimensions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we use the bifurcation method of dynamical systems to study the traveling wave solutions for the Davey–Stewartson equation. A number of traveling wave solutions are obtained. Those solutions contain explicit periodic wave solutions, periodic blow‐up wave solutions, unbounded wave solutions, kink profile solitary wave solutions, and solitary wave solutions. Relations of the traveling wave solutions are given. Some previous results are extended. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
This paper deals with the existence of traveling wave solutions for n‐dimensional delayed reaction–diffusion systems. By using Schauder's fixed point theorem, we establish the existence result of a traveling wave solution connecting two steady states by constructing a pair of upper–lower solutions that are easy to construct. As an application, we apply our main results to a four‐dimensional delayed predator–prey system and obtain the existence of traveling wave solutions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The coupled Klein–Gordon–Schrödinger equation is reduced to a nonlinear ordinary differential equation (ODE) by using Lie classical symmetries, and various solutions of the nonlinear ODE are obtained by the modified ‐expansion method proposed recently. With the aid of solutions of the nonlinear ODE, more explicit traveling wave solutions of the coupled Klein–Gordon–Schrödinger equation are found out. The traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions, and rational functions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
We use the bifurcation method of dynamical systems to study the (2+1)‐dimensional Broer–Kau–Kupershmidt equation. We obtain some new nonlinear wave solutions, which contain solitary wave solutions, blow‐up wave solutions, periodic smooth wave solutions, periodic blow‐up wave solutions, and kink wave solutions. When the initial value vary, we also show the convergence of certain solutions, such as the solitary wave solutions converge to the kink wave solutions and the periodic blow‐up wave solutions converge to the solitary wave solutions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
《Mathematische Nachrichten》2018,291(14-15):2145-2159
We consider the semilinear wave equation posed in an inhomogeneous medium Ω with smooth boundary subject to a local viscoelastic damping distributed around a neighborhood ω of the boundary according to the Geometric Control Condition. We show that the energy of the wave equation goes uniformly and exponentially to zero for all initial data of finite energy taken in bounded sets of finite energy phase‐space. As far as we know, this is the first stabilization result for a semilinear wave equation with localized Kelvin–Voigt damping.  相似文献   

19.
In the present paper we show some results concerning the orbital stability of dnoidal standing wave solutions and orbital instability of cnoidal standing wave solutions to the following Klein–Gordon equation:
uttuxx+u−|u|2u=0.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号