首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Bidentate ligands can lead to stable eta(1)-allyl complexes of Pd(II). A novel chelating phosphonite-oxazoline P,N ligand, abbreviated NOPO(Me2), has been prepared by reaction of 6-chloro-6H-dibenz[c,e][1,2]oxaphosphorin with the lithium alcoholate derived from 4,4-dimethyl-2-(1-hydroxy-1-methylethyl)-4,5-dihydrooxazole. Its reaction with [Pd(eta(3)-C(3)H(5))(micro-Cl)](2) afforded the new eta(1)-allyl Pd complex [PdCl(eta(1)-C(3)H(5))(NOPO(Me2))] 2 in 91% yield. This constitutes a still rare example of structurally characterized eta(1)-allyl Pd(II) complex. Chloride abstraction led to the corresponding cationic eta(3)-allyl complex [Pd(eta(3)-C(3)H(5))(NOPO(Me2))]PF(6) 3, which has also been characterized by X-ray diffraction. CO insertion into the Pd-C sigma-bond of the eta(1)-allyl ligand of 2 afforded the corresponding 3-butenoyl palladium complex [PdCl[C(O)C(3)H(5)](NOPO(Me2))] 4 under mild conditions, which supports the view that CO insertion into eta(3)-allyl palladium cationic complexes occurs via first coordination of the counterion to form a more reactive eta(1)-allyl intermediate.  相似文献   

2.
The oxidative addition of the allylic acetate, CH2=CH-CH2-OAc, to the palladium(o) complex [Pd0(P,P)], generated from the reaction of [Pd(dba)2, with one equivalent of P,P (P,P = dppb = 1,4-bis(diphenylphosphanyl)butane, and P,P = dppf = 1,1'-bis(diphenylphosphanyl)ferrocene), gives a cationic (eta3-allyl)palladium(II) complex, [(eta3-C3H5)Pd(P,P)+]. with AcO as the counter anion. This reaction is reversible and proceeds through two successive equilibria. The overall equilibrium constants have been determined in DMF. Compared with PPh3, the overall equilibrium lies more in favor of the cationic (eta3-allyl)palladium(II) complex when bidentate P,P ligands are considered in the order: dppb > dppf > PPh3. The reaction proceeds via a neutral intermediate complex [(eta2-CH=CH-CHCH2-OAc)Pd0(P,P)], which has been kinetically detected. The rate constants of the successive steps have been determined in DMF by UV spectroscopy and conductivity measurements. The overall complexation step of the Pd0 by the allylic acetate C=C bond is faster than the oxidative addition/ionization step which gives the cationic (eta3-allyl)palladium(II) complex.  相似文献   

3.
Allylic substitution of allylic cyclic carbonates with PhSH or PhOH in the presence of CpRu(PPh3)2Cl (5 mol %) afforded (E)-allylic alcohol and erythro-β-hydroxy thiophenoxide or phenoxide respectively, via external attack of nucleophiles to π-allyl ruthenium complex.  相似文献   

4.
The first pi-allyl complexes of CuIII have been prepared and characterized by using rapid injection nuclear magnetic resonance spectroscopy (RI-NMR). The prototype, (eta3-allyl)dimethylcopper(III), was prepared by injection of allyl chloride into a THF-d8 solution of iodo-Gilman reagent, Me2CuLi.LiI (A), spinning in the probe of an NMR spectrometer at -100 degreesC. A sigma-allyl ate complex, lithium (eta1-allyl)trimethylcuprate(III), was prepared in high yield by including 1 equiv of tributylphosphine in the reaction mixture or by using allyl acetate as the substrate. Cyano ate complex, lithium cis-(eta1-allyl)cyanodimethylcuprate(III) was obtained in high yield by injecting allyl chloride or allyl acetate into the cyano-Gilman reagent, Me2CuLi.LiCN (B), in THF-d8 at -100 degrees C. Reactions of A with allylic substrates show a definite dependence on leaving group (chloride vs acetate), whereas those of B do not. Moreover, these reagents have different regioselectivities, which in the case of A vary with temperature. Finally, the exclusive formation of cis-cyano sigma-allyl CuIII intermediates in both the 1,4-addition of B to alpha-enones and its SN2alpha reaction with allylic substrates now makes sense in terms of pi-allyl intermediates in both cases, thus unifying the mechanisms of these two kinds of conjugate addition.  相似文献   

5.
Reactions of nucleophiles with metal-bound hydrocarbyl pi-ligands bound in an eta3-fashion are key steps in a variety of carbon-carbon and carbon-heteroatom bond-forming reactions. To reveal factors that control the rates of reaction of nucleophiles with this type of ligand, the rates of reactions of an aromatic and an aliphatic amine with a series of eta3-allyl, eta3-benzyl, and eta3-phenethyl palladium complexes ligated by the bisphosphine (R)-BINAP to form allylic and benzylic amines were measured. These data showed that the less common addition to an eta3-benzyl complex is faster than the more common addition to an eta3-allyl complex. The relative rates of reaction followed the trend naphthylmethyl > naphthylethyl > benzyl > 1,1-dimethylallyl > allyl. Computational studies suggest that there is a correlation between the amount of positive charge at the site of nucleophilic attack and the rate of C-N bond formation.  相似文献   

6.
The palladium-catalyzed three-component coupling reaction (TCCR) of aryl isocyanides, allyl methyl carbonate, and trimethylsilyl azide was conducted in the presence of Pd(2)(dba)(3).CHCl(3) (2.5 mol %) and dppe (1,2-bis(diphenylphosphino)ethane) (10 mol %). Allyl aryl cyanamides with a wide variety of functional groups were obtained in excellent yields. This palladium-catalyzed TCCR was further utilized for the synthesis of N-cyanoindoles. The reaction of 2-alkynylisocyanobenzenes, allyl methyl carbonate, and trimethylsilyl azide in the presence of Pd(2)(dba)(3).CHCl(3) (2.5 mol %) and tri(2-furyl)phosphine (10 mol %) at higher temperatures afforded N-cyanoindoles in good to allowable yields. (eta(3)-Allyl)(eta(3)-cyanamido)palladium complex, an analogue of the bis-pi-allylpalladium complex, is a key intermediate in the TCCR, and a pi-allylpalladium mimic of the Curtius rearrangement is involved to generate the (eta(3)-allyl)(eta(3)-cyanamido)palladium intermediate.  相似文献   

7.
An analysis of product distributions in the Tsuji-Trost reaction indicates that several instances of reported "memory effects" can be attributed to slow interconversion of the initially formed syn- and anti-[Pd(eta3-allyl)] complexes. Addition of chloride triggers a true memory effect, in which the allylic terminus originally bearing the leaving group has a higher reactivity. The latter effect, termed regioretention, can be rationalized by ionization from a palladium complex bearing a chloride ion, forming an unsymmetrically substituted [Pd(eta3-allyl)] complex. DFT calculations verify that the position trans to the phosphine ligand is more reactive both in the initial ionization and in the subsequent nucleophilic attack.  相似文献   

8.
Palladium-catalyzed electrophilic allylation of aldehydes with allylstannanes has been proposed in the literature as a model reaction illustrating the potential of nucleophilic eta(1)-allyl palladium pincer complexes to promote new catalytic processes. This reaction was studied by a joint experimental and theoretical approach. It was shown that pincer palladium complexes featuring a S approximately P approximately S and a S approximately C approximately S tridentate ligand are efficient catalysts for this reaction. The full mechanism of this transformation was studied in detail by means of DFT calculations. Two pathways were explored: the commonly proposed mechanism involving eta(1)-allyl palladium intermediates and a Lewis acid promoted mechanism. Both of these mechanisms were compared to the direct transformation that was shown experimentally to occur under mild conditions. The mechanism involving an eta(1)-allyl palladium intermediate has been discarded on energetic grounds, the nucleophilic attack and the transmetalation step being more energetically demanding than the direct reaction between allyltin and the aldehyde. On the other hand, a mechanism where the palladium acts as a Lewis acid proved to be fully consistent with all experimental and theoretical results. This mechanism involves (L approximately X approximately L)Pd(+) species which activate the aldehyde moiety toward nucleophilic attack.  相似文献   

9.
The direct addition of a proton to a carbonyl oxygen in an eta2-enone complex of palladium and platinum led to the quantitative formation of eta3-1-hydroxyallyl complexes of palladium and platinum, of which X-ray diffraction analysis showed typical eta3-allyl structure.  相似文献   

10.
2-alkenyl p-tolyl sulfone was converted into the corresponding 3-acetoxy-1-alkenyl p-tolyl sulfone via a π-allyl palladium complex which underwent regiospecific attack of a nucleophile, acetate ion, and the reaction conditions for predominant formation of 3-chloro-1-alkenyl p-tolyl sulfone are also described.  相似文献   

11.
Electrophilic allylic substitution of allylstannanes with aldehyde and imine substrates could be achieved by employment of palladium pincer complex catalysts. It was found that the catalytic activity of the pincer complexes is highly dependent on the ligand effects. The best results were obtained by employment of PCP pincer complexes with weakly coordinating counterions. In contrast to previous applications for electrophilic allylic substitutions via bisallylpalladium complexes, the presented reactions involve monoallylpalladium intermediates. Thus, employment of pincer complex catalysts extends the synthetic scope of the palladium-catalyzed allylic substitution reactions. Moreover, use of these catalysts eliminates the side reactions occurring in transformations via bisallylpalladium intermediates. The key intermediate of the electrophilic substitution reaction was observed by (1)H NMR spectroscopy. This intermediate was characterized as an eta(1)-allyl-coordinated pincer complex. Density functional theory (DFT) modeling shows that the electrophilic attack can be accomplished with a low activation barrier at the gamma-position of the eta(1)-allyl moiety. According to the DFT calculations, this reaction takes place via a six-membered cyclic transition-state (TS) structure, in which the tridentate coordination state of the pincer ligand is preserved. The stereoselectivity of the reaction could be explained on the basis of the six-membered cyclic TS model.  相似文献   

12.
The reactivity of amidinato complexes of molybdenum and tungsten bearing pyridine as a labile ligand, [M(eta(3)-allyl)(eta(2)-amidinato)(CO)(2)(pyridine)](M = Mo; 1-Mo, M = W; 1-W), toward bidentate ligands such as 1,10-phenanthroline (phen) and 1,2-bis(diphenylphosphino)ethane (dppe) was investigated. The reaction of 1 with phen at ambient temperature resulted in the formation of monodentate amidinato complexes, [M(eta(3)-allyl)(eta(1)-amidinato)(CO)(2)(eta(2)-phen)](M = Mo; 2-Mo, M = W; 2-W), which has pseudo-octahedral geometry with the amidinato ligand coordinated to the metal in an eta(1)-fashion. The phen ligand was located coplanar with two CO ligands and the eta(1)-amidinato ligand was positioned trans to the eta(3)-allyl ligand. In solution, both complexes 2-Mo and 2-W showed fluxionality, and complex 2-Mo afforded allylamidine (3) on heating in solution. In the reaction of 1 with dppe at ambient temperature, the simple substitution reaction took place to give dppe-bridged binuclear complexes [{M(eta(3)-allyl)(eta(2)-amidinato)(CO)(2)}(2)(mu-dppe)](M = Mo; 5-Mo, M = W; 5-W), whereas mononuclear monocarbonyl complexes [M(eta(3)-allyl)(eta(2)-amidinato)(CO)(eta(2)-dppe)](M = Mo; 6-Mo, M = W; 6-W) were obtained under acetonitrile- or toluene-refluxing conditions. Mononuclear complex 6 was also obtained by the reaction of binuclear complex 5 with 0.5 equivalents of dppe under refluxing in acetonitrile or in toluene. The X-ray analyses and variable-temperature (31)P NMR spectroscopy of complex 6 indicated the existence of the rotational isomers of the eta(3)-allyl ligand, i.e., endo and exo forms, with respect to the carbonyl ligand. The different reactivity of complex 1 toward phen and dppe seems to have come from the difference in the pi-acceptability of each bidentate ligand.  相似文献   

13.
The reaction mechanism of the Pd-catalyzed benzyl/allyl coupling of benzyl chloride with allyltributylstannan, resulting in the dearomatization of the benzyl group, was studied using density functional theory calculations at the B3LYP level. The calculations indicate that the intermediate (eta(3)-benzyl)(eta(1)-allyl)Pd(PH(3)) is responsible for the formation of the kinetically favored dearomatic product. Reductive elimination of the dearomatic product from the intermediate occurs by coupling the C-3 terminus of the eta(1)-allyl ligand and the para-carbon of the eta(3)-benzyl ligand in (eta(3)-benzyl)(eta(1)-allyl)Pd(PH(3)). For comparison, various C-C coupling reaction pathways have also been examined.  相似文献   

14.
The selective activation of substrates I, potential bisnucleophiles, was achieved by using different palladium catalysts. The synthetic potential of this strategy has been demonstrated in the regiodivergent synthesis of carbocycles from substrates of type I, bearing malonate-type pronucleophiles and an alkenyl stannane, with vinyl epoxides. A selective palladium-catalyzed reaction of I with the vinyl epoxide gives rise to an allylic alcohol, which, after activation as a carbonate, led to the cyclization product by a second palladium-catalyzed reaction. The transmetalation process is favored with palladium-catalysts without phosphines or arsines as the ligands. On the other hand, the use of palladium complexes with PPh3 as the ligand inhibits the transmetalation pathway and promotes the nucleophilic attack of the malonate-type anions on the intermediate (eta 3-allyl)-palladium complexes.  相似文献   

15.
Aydin J  Szabó KJ 《Organic letters》2008,10(13):2881-2884
A mechanistically new palladium-pincer complex catalyzed allylation of sulfonimines is presented. This reaction involves C-H bond functionalization of allyl nitriles under mild conditions. The reaction proceeds with a high regioselectivity, without allyl rearrangement of the product. Modeling studies indicate that the carbon-carbon bond formation process proceeds via (eta (1)-allyl)palladium pincer complex intermediates.  相似文献   

16.
Fully substituted triazoles were synthesized via the four-component coupling reaction of unactivated silylacetylenes, two equivalents of allyl carbonates, and trimethylsilyl azide in the presence of a Pd(0)-Cu(I) bimetallic catalyst. Various trisubstituted 1,2,3-triazoles were obtained in good yields. The reaction most probably proceeds through the [3+2] cycloaddition reaction between the alkynylcopper species and azide followed by the cross-coupling reaction between the vinylcopper intermediate and π-allylpalladium complex.  相似文献   

17.
The regioselectivity of the palladium‐catalyzed cyclization of propargylic carbonates with sulfonamide nucleophiles is critically dependent on the bite angle of the bidentate phosphine ligand. Ligands with small bite angles favor attack on the central carbon atom of an allenylpalladium intermediate to afford cyclic dienamide products, whereas the use of those with large bite angles leads to alkynyl azacycles, with high stereoselectivity. A computational analysis of the reaction pathway is also presented.  相似文献   

18.
We report a catalyst for intermolecular hydroamination of vinylarenes that is substantially more active for this process than catalysts published previously. With this more reactive catalyst, we demonstrate that additions of amines to vinylarenes and dienes occur in the presence of potentially reactive functional groups, such as ketones with enolizable hydrogens, free alcohols, free carboxylic acids, free amides, nitriles, and esters. The catalyst for these reactions is generated from [Pd(eta(3)-allyl)Cl](2) (with or without added AgOTf) or [Pd(CH(3)CN)(4)](BF(4))(2) and Xantphos (9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene), which generates complexes with large P-Pd-P bite angles. Studies on the rate of the C-N bond-forming step that occurs by attack of amine on an eta(3)-phenethyl and an eta(3)-allyl complex were conducted to determine the effect of the bite angle on the rate of this nucleophilic attack. Studies on model eta(3)-benzyl complexes containing various bisphosphines showed that the nucleophilic attack was faster for complexes containing larger P-Pd-P bite angles. Studies of substituted unsymmetrical and unsubstituted symmetrical model eta(3)-allyl complexes showed that nucleophilic attack on complexes ligated by Xantphos was faster than on complexes bearing ligands with smaller bite angles and that nucleophilic attack on unsymmetrical allyl complexes with larger bite angle ligands was faster than on unsymmetrical allyl complexes with smaller bite angle ligands. However, monitoring of catalytic reactions of dienes by (31)P NMR spectroscopy showed that the concentration of active catalyst was the major factor that controlled rates for reactions of symmetrical dienes catalyzed by complexes of phosphines with smaller bite angles. The identity of the counterion also affected the rate of attack: reactions of allylpalladium complexes with chloride counterion occurred faster than reactions of allylpalladium complexes with triflate or tetrafluoroborate counterion. As is often observed, the dynamics of the allyl and benzyl complexes also depended on the identity of the counterion.  相似文献   

19.
Palladium-catalyzed allylic substitution of aryl allyl chlorides with aromatic and heteroaromatic aldehydes was performed in the presence of hexamethylditin. This procedure involves palladium-catalyzed formation of transient allylstannanes followed by generation of a bis(allyl)palladium intermediate, which subsequently reacts with the aldehyde electrophile. The catalytic substitution reaction proceeds with high regio- and stereoselectivity. The stereoselectivity is affected by the steric and electronic properties of the allylic substituents. Various functionalities including NO(2), COCH(3), Br, and F groups are tolerated under the applied catalytic conditions. Density functional calculations at the B3PW91/DZ+P level of theory were applied to study the steric and electronic effects controlling the regio- and stereoselectivity of the electrophilic addition. The development of the selectivity was studied by modeling the various bis(allyl)palladium species occurring in the palladium-catalyzed substitution of cinnamyl chloride with benzaldehyde. It was found that the electrophilic attack proceeds via a six-membered cyclic transition state, which has a pronounced chair conformation. The regioselectivity of the reaction is controlled by the location of the phenyl group on the eta(1)-allyl moiety of the complex. The stereoselectivity of the addition process is determined by the relative configuration of the phenyl substituents across the developing carbon-carbon bond. The lowest energy path corresponds to the formation of the branched allylic isomer with the phenyl groups in anti configuration, which is in excellent agreement with the experimental findings.  相似文献   

20.
Reaction of allene-substituted cyclohexa- and cyclohepta-1,3-dienes with [PdCl(2)(PhCN)(2)] gave eta(3)-(1,2,3)-cyclohexenyl- and eta(3)-(1,2,3)-cycloheptenylpalladium complexes, respectively, in which C-C bond formation between the allene and the 1,3-diene has occurred. Analysis of the (pi-allyl)palladium complexes by NMR spectroscopy, using reporter ligands, shows that the C-C bond formation has occurred by a trans carbopalladation involving nucleophilic attack by the middle carbon atom of the allene on a (pi-diene)palladium(II) complex. The stereochemistry of the (pi-allyl)palladium complexes was confirmed by benzoquinone-induced stereoselective transformations to allylic acetates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号