首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 40-step extraction process to separate rare earth elements (RЕEs) according to the praseodymium–cerium line with the use of mixer–settler extractors in a 100% TBP–Ln(NO3)3–Ca(NO3)2 system is implemented. A lanthanum–cerium concentrate containing less than 0.03 wt % of the remaining REEs is obtained. The flow diagram of the separation process of a rare earth (RE) concentrate isolated from phosphogypsum is considered.  相似文献   

2.
Solubility data in the diagonal sections of the quaternary reciprocal 2KCl + Ca(NO3)2 → 2KNO3 + CaCl2–H2O system at 25 and 15°C are presented. It has been shown that the quaternary system has no stable diagonal at the studied temperatures, but contains a stable pair of salts, namely, potassium nitrate and calcium chloride. The obtained data can be used to optimize the thermal and concentrational parameters of the synthesis of potassium nitrate from calcium nitrate and potassium chloride.  相似文献   

3.
The phase and chemical compositions of precipitates formed in the system Zn(VO3)2–HCl–VOCl2–H2O at pH 1?3, molar ratio V4+: V5+ = 0.1?9, and 80°C were studied. It was shown that, within the range 0.4 ≤ V4+: V5+ ≤ 9, zinc vanadate with vanadium in a mixed oxidation state forms with the general formula ZnxV4+ yV5+ 2-yO5 ? nH2O (0.005 ≤ x ≤ 0.1, 0.05 ≤ y ≤ 0.3, n = 0.5?1.2). Vanadate ZnxV2O5 ? nH2O with the maximum tetravalent vanadium content (y = 0.30) was produced within the ratio range V4+: V5+ = 1.5?9.0. Investigation of the kinetics of the formation of ZnxV2O5 ? nH2O at pH 3 determined that tetravalent vanadium ions VO2+ activate the formation of zinc vanadate, and its precipitation is described by a second-order reaction. It was demonstrated that, under hydrothermal conditions at pH 3 and 180°C, zinc decavanadate in the presence of VOCl2 can be used as a precursor for producing V3O7 ? H2O nanorods 50–100 nm in diameter.  相似文献   

4.
The structure of [Pb3(OH)4Co(NO2)3](NO3)(NO2)·2H2O is determined by single crystal X-ray diffraction. The crystallographic characteristics are as follows: a = 8.9414(4) Å, b = 14.5330(5) Å, c = 24.9383(9) Å, V = 3240.6(2) Å3, space group Pbca, Z = 8. The Co(III) atoms have a slightly distorted octahedral coordination formed by three nitrogen atoms belonging to nitro groups (Co–Nav is 1.91 Å) and three oxygen atoms belonging to hydroxyl groups (Co–Oav is 1.93 Å). The hydroxyl groups act as μ3-bridges between the metal atoms. The geometric characteristics are analyzed and the packing motif is determined.  相似文献   

5.
The glass formation in the Al2(SO4)3–(CH3)2SO–H2O system was found for the first time. The competitive ability of ligands, dimethyl sulfoxide and water (which are strong donors), for entering the first coordination sphere of aluminum is considered. The possibility of mixed coordination of (CH3)2SO (via sulfur and oxygen atoms) in the first coordination sphere of aluminum with retention of the glass-forming ability of the sample was suggested on the basis of IR spectral study.  相似文献   

6.
Formation of zirconia nanocrystals in the course of thermal treatment of an X-ray amorphous zirconium oxyhydroxide was studied. It was shown that the formation of tetragonal and monoclinic polymorphs of ZrO2 in the temperature range from 500 to 700°C occurs owing to dehydration and crystallization of amorphous hydroxide. An increase of the temperature up to 800°C and higher activates mass transfer processes and, as a result, activates the nanoparticle growth and increases the fraction of the phase based on monoclinic modification of ZrO2 due to mass transfer from the nanoparticles with the non-equilibrium tetragonal structure. Herewith, formed ZrO2 nanocrystals with monoclinic structure have a broad size distribution of crystallites, and the average crystallite size after thermal treatment at 1200°C for 20 min is about 42 nm.  相似文献   

7.
The hexahydrate of praseodymium nitrate hexahydrate Pr(NO3)3·6H2O does not show phase transitions in the range of 233–328 K when the compound melts in its own water of crystallization. It is suggested that the thermal decomposition is a complex step-wise process, which involves the condensation of 6 mol of the initial monomer Pr(NO3)3·6H2O into a cyclic cluster 6[Pr(NO3)3·6H2O]. This hexamer gradually loses water and nitric acid, and a series of intermediate amorphous oxynitrates is formed. The removal of 68% HNO3–32% H2O azeotrope is essentially a continuous process occurring in the liquid phase. At higher temperatures, oxynitrates undergo thermal degradation and lose water, nitrogen dioxide and oxygen, leaving behind normal praseodymium oxide Pr2O3. The latter absorbs approximately 1 mol of atomic oxygen from N2O5 disproportionation, giving rise to the non-stoichiometric higher oxide Pr2O3.33. All mass losses are satisfactorily accounted for under the proposed scheme of thermal decomposition.  相似文献   

8.
The crystallization polytherm of the ternary CO(NH2)2–KNO3–H2O system is plotted for the first time via visual polythermal analysis and calculating ternary eutonics characteristics from data on the boundary elements of two-component systems. The ternary eutonics modeling error does not exceed 3.5%. In addition to the crystallization fields of individual components, the field of the redox reaction that occurs in the system between potassium nitrate and carbamide is shown in the CO(NH2)2–KNO3–H2O diagram by a dashed outline.  相似文献   

9.
The paper presents the experimental results of the structural investigations and thermal analysis of copper(II) oxalate, a polynuclear coordination compound, obtained by a new method, through the reaction of 1,2-ethanediol with Cu(NO3)2·3H2O. The reaction between 1,2-ethanediol and Cu(NO3)2·3H2O occurs, under some working conditions, with the oxidation of 1,2-ethanediol to the oxalate anion (L). The synthesized polynuclear coordination compound, [CuL·0.3H2O]n, was characterized by chemical analysis, electronic and vibrational spectra and thermal analysis. The thermal properties of the polynuclear coordination compound have been investigated by TG, DTG and DSC. The obtained decomposition product is CuO. Powder XRD (X-ray diffraction), IR spectroscopy and TEM (transmission electron microscopy) were used to characterize the composition, the crystalline structure and the surface morphology of the copper oxide obtained through thermolysis. The thermal conversion product, copper(II) oxide, has a microporous structure with a large specific area.  相似文献   

10.
Solubility isotherms of water–sulfonol–hydrochloric (or sulfuric) acid and water–sodium dodecyl sulfate–hydrochloric acid systems at 75°C and a water–sodium dodecyl sulfate–sulfuric acid system at 50°C are constructed. Regions of two-phase liquid equilibrium suitable for use in extraction are found. Concentration parameters for extraction are determined. The interfacial distribution of a series of metal ions with and without such additional complexing reagents as diantipyrylmethane and diantipyrylheptane is studied.  相似文献   

11.
A new neptunium(V) complex [(NpO2)2(CH3COO)2(H2O)] ? 2H2O was synthesized and its crystal structure was determined. The unit cell parameters are: a = 24.007(10) Å, b = 6.779(3) Å, c = 8.076(3) Å, space group Pnma, Z = 4, V = 1314.2(9) Å3, R = 0.049, wR(F2) = 0.105. The crystal structure of the compound is composed of neutral [(NpO2)2(CH3COO)2(H2O)] layers and molecules of the water of crystallization. Each of the crystallographically independent neptunoyl ions performs a bidentate function thus forming a composite system of cation-cation bonds.  相似文献   

12.
A new dichromium(III) cobalt(II) diphosphate(V) of the formula CoCr2(P2O7)2 was detected in the Co3Cr4(PO4)6–Cr(PO3)3 system. The new compound was obtained as a result of high-temperature solid-state reactions between CoCO3, Cr2O3 and (NH4)2HPO4 as well as between Cr(PO3)3 and Co3Cr4(PO4)6. CoCr2(P2O7)2 was characterized using XRD, DTA and IR methods. Results demonstrated that CoCr2(P2O7)2 crystallizes in the triclinic system and its unit cell parameters were calculated. Its infrared spectrum was presented. CoCr2(P2O7)2 melts incongruently at 1270±10 °C with a formation of solid α-CrPO4. The compound Co3Cr4(PO4)6, component of the system under study, was obtained for the first time as a pure phase. Its thermal stability was also investigated. Co3Cr4(PO4)6 is stable in air up to 1410 ± 20 °C.  相似文献   

13.
In the ternary system LiCl–CsCl–H2O the binary salt LiCl·2CsCl·4H2O was formed. Its structure was proved by the X-ray structural analysis. The binary compound formed in the aqueous solution by the structurally-forced insertion mechanism.  相似文献   

14.
15.
The solubility in a ternary fullerenol-d (C60(OH)22–24)–SmCl3–H2O system at 25°C is studied via isothermal saturation in ampules. The solubility diagram is shown to be a simple eutonic one that consists of two branches corresponding to the crystallization of fullerenol-d (C60(OH)22–24 · 30H2O) and samarium(III) chloride SmCl3 · 6H2O crystallohydrates and contains one nonvariant eutonic point corresponding to saturation with both crystallohydrates. The long branch of C60(OH)22–24 · 30H2O crystallization shows the effect of fullerenol-d salting out of saturated solutions; in contrast, the short branch of SmCl3 · 6H2O crystallization shows the pronounced salting-in effect of samarium(III) chloride.  相似文献   

16.
Single crystals of Li(H3O)[UO2(C2O4)2(H2O)] · H2O (I) have been synthesized and studied by X-ray diffraction. Compound I crystallizes in the monoclinic crystal system with the unit cell parameters: a = 7.1682(10) Å, b = 29.639(6) Å, c = 6.6770(12) Å, β= 112.3(7)°, space group P 21/c, Z = 4, R = 4.36%. Structure I contains discrete mononuclear groups [UO2(C2O4)2(H2O)]2? ascribed to the crystal-chemical group AB 2 01 M1 (A = UO2 2+, B01 =C2O 4 2? , M1 = H2O), which are “cross-linked” by the lithium ions into infinite layers {Li(UO2)(C2O4)2(H2O)2}? perpendicular to [010]. The hydroxonium ions are located between adjacent uranium-containing layers. A hydrogen bond system involving water molecules, oxalate ions, and hydroxonium combines the anionic layers into a three-dimensional framework.  相似文献   

17.
A method for producing synthetic troegerite of composition(UO2)3(AsO4)2 · 12H2. Owas developed. X-ray diffraction, IR spectrometry, X-ray fluorescence analysis, and scanning calorimetry were used to study its dehydration and thermal decomposition, to solve the structgure, and to determine X-ray diffraction and IR spectroscopic characteristics.  相似文献   

18.
19.
Solid-liquid equilibria in the quaternary systems KCl–MgCl2–SrCl2–H2O and NaCl–KCl–SrCl2–H2O at 348 K were measured by the isothermal solution saturation method. The composition of the equilibrium solid phase, solubilities of salts, and densities of saturated solution in the two systems were determined. Phase diagrams, water content diagrams and solution density diagrams of quaternary systems were plotted according to experimental data. The phase diagram of the quaternary system NaCl–KCl–SrCl2–H2O has one invariant point, three univariant curves as the boundary of NaCl, KCl and SrCl2 · 2H2O. This phase diagrams were simple co-saturation type without complex salt and solid solution. For the quaternary system KCl–MgCl2–SrCl2–H2O, one complex salt KCl · MgCl2 · 6H2O (Car) had been found in this system, consisted of five univariant curves, two invariant points and four crystallization regions of MgCl2 · 6H2O (Bis), KCl, SrCl2 · 2H2O and KCl · MgCl2 · 6H2O. And the densities transformation rules were simply discussed. Simultaneously, the solubilities and densities data in invariant point of the quaternary system NaCl–KCl–SrCl2–H2O had been compared with the experimental data of previous researchers.  相似文献   

20.
The solubility in the quaternary water–salt system Zr(SO4)2 · 4Н2О–Na2SO4–H2SO4–H2O at 25°C was studied. It was found that, in the system, there is crystallization of not only Na2SO4 and Zr(SO4)4 · 4H2O, but also sodium sulfate zirconates Na2Zr(SO4)2(OH)2 · 0.3H2O, Na4Zr(SO4)4 · 3H2O, and Na2Zr(SO4)2 · 3H2O and two new compounds, S1 and S2, which are presumably Na2ZrO(SO4)2 · 2H2O and Na2Zr2O2(SO4)3 · 6H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号