首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The dependence of the ultrafast photoinduced electron transfer dynamics in donor-acceptor complexes on the excitation pulse carrier frequency (spectral effect) has been investigated in the framework of a model involving three electronic state. The spectral effect has been shown to strongly depend on the angle theta between the reaction coordinate directions corresponding to optical and charge transfer transitions. Describing the solvent as a linear homogenous polar medium and accounting for Coulombic interaction of the transferred charge with the medium polarization fluctuations, the angle theta has been found out to be typically in the area 40 degrees -85 degrees. Exactly in this area of theta the spectral effect is predicted to be most pronounced.  相似文献   

4.
The dependence of the photoinduced charge transfer rate constant on the pump pulse carrier frequency is shown to be strong, and it is considerably affected by the value of the reorganization energy of low‐frequency modes at the stage of excitation. In the area of small values of the reorganization energy, the dependence of the charge transfer rate constant on the pump pulse carrier frequency is strongly nonmonotonic that is caused by vibrational resonances and variation of the initial position of the wave packet on the term of the locally excited state. Increasing the reorganization energy smoothes the dependence. The smoothing is caused by the broadening of the vibrational resonances and their overlapping. The high‐frequency vibrational mode excitation typically accelerates the charge transfer in both areas of high and low exergonicity and decelerates it in the vicinity of the Marcus barrierless region.  相似文献   

5.
A model of nonequilibrium charge recombination from an excited adiabatic state of a donor-acceptor complex induced by the nonadiabatic interaction operator is considered. The decay of the excited state population prepared by a short laser pulse is shown to be highly nonexponential. The influence of the excitation pulse carrier frequency on the ultrafast charge recombination dynamics of excited donor-acceptor complexes is explored. The charge recombination rate constant is found to decrease with increasing excitation frequency. The variation of the excitation pulse carrier frequency within the charge transfer absorption band of the complex can alter the effective charge recombination rate by up to a factor 2. The magnitude of this spectral effect decreases strongly with increasing electronic coupling.  相似文献   

6.
Although polaronic interactions and states abound in charge transfer processes and reactions, quantitative and separable determination of electronic and nuclear relaxation is still challenging. The present paper employs the amplitudes, polarizations, and phases of four-wave mixing signals to obtain unique dynamical information on relaxation processes following photoinduced charge transfer between iodide and 1-ethyl-4-(carbomethoxy)pyridinium ions. Pump-probe signal amplitudes reveal the coherent coupling of an underdamped 115 cm(-1) nuclear mode to the charge transfer excitation. Assignments of this recurrence to intramolecular vibrational modes of the acceptor and to modulation of the intermolecular donor-acceptor distance are discussed on the basis of a high-level density functional theory normal-mode analysis and previously observed wave packet dynamics of solvated molecular iodine. Nuclear relaxation of the acceptor induces sub-picosecond decay of the pump-probe polarization anisotropy from an initial value of 0.4 to an asymptotic value of -0.05. Electronic structure calculations suggest that relaxation along the torsional coordinate of the ethyl group is the origin of the anisotropy decay. Electric-field-resolved transient grating (EFR-TG) signal fields are obtained by spectral interferometry with a diffractive optic based interferometer. These measurements show that the signal phase and amplitude possess similar dynamics. Model calculations are used to demonstrate how the EFR-TG signal phase yields unique information on transient material resonances located outside the laser pulse spectrum. This effect can be rationalized in that the real and imaginary parts of the nonlinear polarization are related by the Kramers-Kronig transformation, which allows the dispersive component of the polarization response to exhibit spectral sensitivity over a larger frequency range than that defined by the absorption bandwidth.  相似文献   

7.
The influence of spatial charge redistribution modeled by a change in the dipole moment of the reagent that experiences excitation on the dynamics of ultrafast photoinduced electron transfer was studied. A two-center model based on the geometry of real molecules was suggested. The model described photoexcitation and subsequent electron transfer in a donor-acceptor pair. The rate of electron transfer was shown to depend substantially on the dipole moment of the donor at the photoexcitation stage and the direction of subsequent electron transfer. These parameters also determined the most important characteristic of ultrafast photoinduced electron transfer, the angle ? between the reaction coordinates corresponding to these reaction stages. The regions of model parameters corresponding to the strongest influence of the carrier frequency of the exciting pulse on the rate of electron transfer were established.  相似文献   

8.
Fifth-order nonlinear visible-infrared spectroscopy is used to probe coherent and incoherent vibrational energy relaxation dynamics of highly excited vibrational modes indirectly populated via ultrafast photoinduced back-electron transfer in a trinuclear cyano-bridged mixed-valence complex. The flow of excess energy deposited into four C≡N stretching (ν(CN)) modes of the molecule is monitored by performing an IR pump-probe experiment as a function of the photochemical reaction (τ(vis)). Our results provide experimental evidence that the nuclear motions of the molecule are both coherently and incoherently coupled to the electronic charge transfer process. We observe that intramolecular vibrational relaxation dynamics among the highly excited ν(CN) modes change significantly en route to equilibrium. The experiment also measures a 7 cm(-1) shift in the frequency of a ~57 cm(-1) oscillation reflecting a modulation of the coupling between the probed high-frequency ν(CN) modes for τ(vis) < 500 fs.  相似文献   

9.
10.
Rate constants for intramolecular electron transfer within the intervalence charge transfer (-1) states of the complexes [{Ru3O(OAc)6(L)(CO)}2(mu-pz)] (where L= 4-(dimethylamino)pyridine (1), pyridine (2), 3-cyanopyridine (3), or 4-cyanopyridine (4) and pz = pyrazine) were determined by coalescence of infrared (IR) vibrational spectral line shapes in seven solvents. The electron-transfer times (kET-1) show a strong correlation with solvent relaxation times determined in separate ultrafast time-resolved fluorescence experiments. The best comparison is found with the parameter t1e, which is ascribed to inertial solvent relaxation. The IR spectra of these mixed-valence complexes are thus a steady-state spectral probe of ultrafast, dynamic solvent relaxation processes which are otherwise only accessible using laser-pumped, ultrafast time-resolved measurements.  相似文献   

11.
12.
The monitoring of the excited-state dynamics by time- and frequency-resolved spontaneous emission spectroscopy has been studied in detail for a model exhibiting an excited-state curve crossing. The model represents characteristic aspects of the photoinduced ultrafast dynamics in large molecules in the gas or condensed phases and accounts for strong nonadiabatic and electron-vibrational coupling effects, as well as for vibrational relaxation and optical dephasing. A comprehensive overview of the dependence of spontaneous emission spectra on the characteristics of the excitation and detection processes (such as carrier frequencies, pump/gate pulse durations, as well as optical dephasing) is presented. A systematic comparison of ideal spectra, which provide simultaneously perfect time and frequency resolution and thus contain maximal information on the system dynamics, with actually measurable time- and frequency-gated spectra has been carried out. The calculations of real time- and frequency-gated spectra demonstrate that complementary information on the excited-state dynamics can be extracted when the duration of the gate pulse is varied.  相似文献   

13.
14.
The influence of the excitation pulse carrier frequency on the dynamics of ultrafast charge recombination in donor-acceptor complexes was studied in the limit of strong electron coupling. An increase in the carrier frequency of excitation pulses invariably decreased the effective rate constant. The dependence of the degree to which the decay of the excited state deviated from the exponential law on reaction exothermicity and the dynamic characteristics of the medium was revealed.  相似文献   

15.
We report on a novel ultrafast two-dimensional infrared laser experiment that correlates vibrational bands of reactant and product of a photoreaction. The possibilities of this technique are demonstrated for the metal-to-ligand charge transfer (MLCT) in [Re(CO)3Cl(dmbpy)] (dmbpy = 4,4'-dimethyl-2,2'bipyridine) where we correlated the CO vibrational modes of the ground state and the MLCT state. A distinct vibrational mode is excited in the electronic ground state by an infrared laser pulse. This vibrational label survives the subsequent electronic excitation and can be followed in the excited electronic state. It is shown that the order of the vibrational energy levels is not preserved when exciting the molecule as was commonly assumed in the literature.  相似文献   

16.
The development of a time-resolved coherent anti-Stokes Raman scattering (CARS) variant for use as a probe of excited electronic state Raman-active modes following excitation with an ultrafast pump pulse is detailed. Application of this technique involves a combination of broadband fs-time scale pulses and a narrowband pulse of ps duration that allows multiplexed detection of the CARS signal, permitting direct observation of molecular Raman frequencies and intensities with time resolution dictated by the broadband pulses. Thus, this nonlinear optical probe, designated fs/ps CARS, is suitable for observation of Raman spectral evolution following excitation with a pump pulse. Because of the spatial separation of the CARS output signal relative to the three input beams inherent in a folded BOXCARS arrangement, this technique is particularly amenable to probing low-frequency vibrational modes, which play a significant role in accepting vibrational energy during intramolecular vibrational energy redistribution within electronically excited states. Additionally, this spatial separation allows discrimination against strong fluorescence signal, as demonstrated in the case of rhodamine 6G.  相似文献   

17.
We report investigations of the vibrational dynamics of water molecules at the water–air and at the water–lipid interface. Following vibrational excitation with an intense femtosecond infrared pulse resonant with the O–H stretch vibration of water, we follow the subsequent relaxation processes using the surface-specific spectroscopic technique of sum frequency generation. This allows us to selectively follow the vibrational relaxation of the approximately one monolayer of water molecules at the interface. Although the surface vibrational spectra of water at the interface with air and lipids are very similar, we find dramatic variations in both the rates and mechanisms of vibrational relaxation. For water at the water–air interface, very rapid exchange of vibrational energy occurs with water molecules in the bulk, and this intermolecular energy transfer process dominates the response. For membrane-bound water at the lipid interface, intermolecular energy transfer is suppressed, and intramolecular relaxation dominates. The difference in relaxation mechanism can be understood from differences in the local environments experienced by the interfacial water molecules in the two different systems.  相似文献   

18.
Physical and chemical properties of liquid water are dominated by hydrogen bond structure and dynamics. Recent studies on nonlinear vibrational spectroscopy of intramolecular motion provided new insight into ultrafast hydrogen bond dynamics. However, our understanding of intermolecular dynamics of water is still limited. We theoretically investigated the intermolecular dynamics of liquid water in terms of two-dimensional infrared (2D IR) spectroscopy. The 2D IR spectrum of intermolecular frequency region (<1000 cm(-1)) is calculated by using the equilibrium and nonequilibrium hybrid molecular dynamics method. We find the ultrafast loss of the correlation of the libration motion with the time scale of approximately 110 fs. It is also found that the energy relaxation from the libration motion to the low frequency motion takes place with the time scale of about 180 fs. We analyze the effect of the hindered translation motion on these ultrafast dynamics. It is shown that both the frequency modulation of libration motion and the energy relaxation from the libration to the low frequency motion significantly slow down in the absence of the hindered translation motion. The present result reveals that the anharmonic coupling between the hindered translation and libration motions is essential for the ultrafast relaxation dynamics in liquid water.  相似文献   

19.
Three theoretical models were advanced for the dynamics of molecular multiphoton excitation: (i) The zero-order optically active mode connected by intramolecular random anharmonic couplings to a background manifold. (ii) Molecular eigenstates coupled by random radiative transition dipole moments. (iii) The kinetic master equation approach. It is demonstrated that in the Markoffian limit, as long as the intramolecular vibrational relaxation width is small relative to the Rabi frequency, these three approaches are equivalent. In the case of high-field excitation, coherent quantum effects are exhibited even in a randomly coupled system. Resurrection of the quantum oscillations and coherent pumping can be exhibited in intense field excitation on the time scale of intramolecular vibrational relaxation.  相似文献   

20.
The influence of solute-solvent interactions on the vibrational energy relaxation dynamics of perylene and substituted perylenes in the first singlet excited-state upon excitation with moderate (<0.4 eV) excess energy has been investigated by monitoring the early narrowing of their fluorescence spectrum. This narrowing was found to occur on timescales ranging from a few hundreds of femtoseconds to a few picoseconds. Other processes, such as a partial decay of the fluorescence anisotropy and the damping of a low-frequency oscillation due to the propagation of a vibrational wavepacket, were found to take place on a very similar time scale. No significant relationship between the strength of nonspecific solute-solvent interactions and the vibrational energy relaxation dynamics of the solutes could be evidenced. On the other hand, in alcohols the spectral narrowing is faster with a solute having H-bonding sites, indicating that this specific interaction tends to favor vibrational energy relaxation. No relationship between the dynamics of spectral narrowing and macroscopic solvent properties, such as the thermal diffusivity, could be found. On the other hand, a correlation between this narrowing dynamics and the number of low-frequency modes of the solvent molecules was evidenced. All these observations cannot be discussed with a model where vibrational energy relaxation occurs via two consecutive and dynamically well-separated steps, namely ultrafast intramolecular vibrational redistribution followed by slower vibrational cooling. On the contrary, the results indicate that both intra- and intermolecular vibrational energy redistribution processes are closely entangled and occur, at least partially, on similar timescales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号