首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Three Radical-Ln(III)-Radical complexes based on nitronyl nitroxide radicals have been synthesized, structurally and magnetically characterized: [Gd(hfac)3(NITPhOEt)2] (1) (hfac=hexafluoroacetylacetonate, and NITPhOEt=4′-ethoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), [Gd(hfac)3(NITPhOCH2Ph)2] (2) (NITPhOCH2Ph=4′-benzyloxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and [Lu(hfac)3(NITPhOCH2Ph)2] (3). The X-ray crystal structure analyses show that the structures of the three compounds are similar and all consist of the isolated molecules, in which central ions GdIII or LuIII are coordinated by six oxygen atoms from three hfac and two oxygen atoms from nitronyl radicals. The magnetic studies show that in both of the two GdIII complexes, there are ferromagnetic GdIII-Rad interactions and antiferro-magnetic Rad-Rad interactions in the molecules (with JRad−Gd=0.27 cm−1, jRad-Rad=−2.97 cm−1 for 1: and JRad−Gd=0.62 cm−1, jRad-Rad=−7.01 cm−1 for 2). An analogous complex of [Lu(hfac)3 (NITPhOCH2Ph)2] (3) containing diamagnetic LuIII ions has also been introduced for further demonstrating the nature of magnetic coupling between radicals.  相似文献   

2.
选用1,2-二苯氧基乙烷取代的氮氧双自由基(BNPhOEt)与稀土金属反应,得到了2例氮氧双自由基-稀土配合物[Ln(hfac)3(BNPhOEt)]·C6H14(Ln=Tb(1)、Ho(2);hfac=六氟乙酰丙酮),其均为2p-4f一维链状结构.磁性研究表明,在配合物1和2中分别存在铁磁和反铁磁耦合.此外,对2个配...  相似文献   

3.
Spin‐labelled compounds are widely used in chemistry, physics, biology and the materials sciences but the synthesis of stable high‐spin organic molecules is still a challenge. We succeeded in synthesising heteroatom analogues of the 1,1,2,3,3‐pentamethylenepropane (PMP) diradicals with two nitronyl nitroxide ( DR1 ) and with two iminonitroxide ( DR2 ) fragments linked through the C(sp2) atom of the nitrone group. According to magnetic susceptibility measurements, EPR data and ab initio calculations at the (8,6)CASSCF and (8,6)NEVPT2 levels, DR1 and DR2 have singlet ground states. The singlet–triplet energy splitting (2J) is low (J/k=?7.4 for DR1 and ?6.0 K for DR2 ), which comes from the disjoint nature of these diradicals. The reaction of [Cu(hfac)2] with DR1 gives rise to different heterospin complexes in which the diradical acts as a rigid ligand, retaining its initial conformation. For the [{Cu(hfac)2}2( DR1 )(H2O)] complex, sufficiently strong ferromagnetic interactions (J1/k=42.7 and J2/k=14.1 K) between two coordinating CuII ions and DR1 were revealed. In [{Cu(hfac)2}2( DR1 )(H2O)][Cu(hfac)2(H2O)], the very strong and antiferromagnetic (J/k=?416.1 K) exchange interaction between one of the coordinating CuII ions and DR1 is caused by the very short equatorial Cu?O bond length (1.962 Å).  相似文献   

4.
Three novel isomorphous complexes of formula [RE(hfac)3(NITPhOCH3)2], where RE = GdIII, YIII and ErIII; hfac = hexafluoroacetylacetonate; NITPhOCH3 = 4′-methoxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, were synthesized, structurally and magnetically characterized. The crystal structure consists of isolated molecules where the nitronyl nitroxide radicals act as monodentate ligands towards RE(III) through the oxygen atom of the N–O group. The magnetic properties of the complexes were studied by measuring their magnetic susceptibilities at various temperatures in the 5–300 K range. The analyses of these magnetic measurements showed that the spin coupling between the gadolinium ion and the radicals in the GdIII complex is ferromagnetic, while antiferromagnetic superexchange interaction exists between the two radicals in the GdIII and YIII complexes. The ErIII complex reveals an overall intramolecular antiferromagnetic exchange interaction.  相似文献   

5.
Abstract. Two radical–LnIII–radical complexes, [Ln(hfac)3(NITPh‐Ph)2] [Ln = Gd ( 1 ) and Ho ( 2 ), hfac = hexafluoroacetylacetonate; and NITPh‐Ph = 4′‐biphenyl‐4, 4, 5, 5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide] were synthesized and characterized by X‐ray diffraction, elemental analysis, magnetic measurements, as well as IR and UV/Vis spectroscopy. X‐ray crystal structure analysis revealed that the structures of both complexes are isomorphous, the central LnIII ions are coordinated by six oxygen atoms from three hfac ligand molecules and two oxygen atoms from nitronyl radicals. The temperature dependencies of the magnetic susceptibilities were studied. They showed that in the GdIII complex, ferromagnetic interactions between GdIII and the radicals and antiferromagnetic interactions between the radicals coexist in this system (with JRad–Gd = 0.1 cm–1, JRad–Rad = –0.309 cm–1).  相似文献   

6.
《Polyhedron》2007,26(9-11):2021-2026
A novel bis(imino nitroxide)-substituted resorcinol 3H, that has two metal-binding sites with two pairs of the phenolate anion and the imino nitrogen atom, was prepared. The powdered sample of 3H showed an intramolecular ferromagnetic interaction (J/kB = +5 K) between two (imino nitroxide)s through a m-phenylene bridge and a weak intermolecular antiferromagnetic interaction (J/kB =  0.9 K). The reaction of 3H with copper acetate in methanolic ammonia was examined to give a hardly soluble Cu-complex that exhibited ferromagnetic behavior in relatively high temperatures (298–55 K).  相似文献   

7.
Heterometallic polymeric coordination compounds [{Ln(hfac)2(CH3OH)}2{Cu(dmg)(Hdmg)}2]n (abbreviated as [Ln2Cu2]n) involving light lanthanoid ions, Pr, Nd, Sm, and Eu, were synthesized, where H2dmg and Hhfac stand for dimethylglyoxime and 1,1,1,5,5,5-hexafluoropentane-2,4-dione, respectively. The X-ray crystallographic analysis shows that their structures are isomorphous to those of the known heavy lanthanoid analogs. The exchange couplings were evaluated by high-frequency electron paramagnetic resonance and pulsed-field magnetization studies, giving ferromagnetic exchange parameters: JPr-Cu/kB = 0.039(1) K, JNd-Cu/kB = 0.38(1) K, JSm-Cu/kB = 0.95(2) K, and no interaction between Eu and Cu ions. A significant trend is found in the order of the periodic table. The ferro- and antiferromagnetic 4f-3d couplings were characterized for the light and heavy lanthanoid derivatives, respectively. The magnitude of JLn-Cu decreases with a decrease of the 4f-spin portion, i.e., the number of unpaired electrons, whether the coupling is ferro- or antiferromagnetic.  相似文献   

8.
New magnetic metal complexes with organic radical ligands, [M(hfac)2(PyBTM)2] (M = NiII, CoII; hfac = hexafluoroacetylacetonato, PyBTM = (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical), were prepared and their crystal structures, magnetic properties, and electronic structures were investigated. Metal ions in [M(hfac)2(PyBTM)2] constructed distorted octahedral coordination geometry, where the two PyBTM molecules ligated in the trans configuration. Magnetic investigation using a SQUID magnetometer revealed that χT increased with decreasing temperature from 300 K in the two complexes, indicating an efficient intramolecular ferromagnetic exchange interaction taking place between the spins on PyBTM and M with J/kB of 21.8 K and 11.8 K for [NiII(hfac)2(PyBTM)2] and [CoII(hfac)2(PyBTM)2]. The intramolecular ferromagnetic couplings in the two complexes could be explained by density functional theory calculations, and would be attributed to a nearly orthogonal relationship between the spin orbitals on PyBTM and the metal ions. These results demonstrate that pyridyl-containing triarylmethyl radicals are key building blocks for magnetic molecular materials with controllable/predictable magnetic interactions.  相似文献   

9.
The magnetic coupling interactions of the nitronyl nitroxide radicals bound to diamagnetic (YIII) and paramagnetic (GdIII) rare earth ions in two model magnetic systems based on novel rare earth organic radical complexes Ln(hfac)3(NITPhOCH3)2 (Ln = YIII 1, GdIII 2; hafc = hexafluoroacetylacetonate; NITPhOCH3 = 4′-methoxyo-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been investigated by density functional theory (DFT). The magnetic coupling mechanisms were also explored from the viewpoint of molecular orbital and spin density populations. DFT calculations show that the empty 4d-orbitals of YIII and 5d-orbitals of GdIII play an important role in the antiferromagnetic coupling between the two nitronyl nitroxide radical ligands, and that the ferromagnetic coupling between the GdIII ion and the radical magnetic centers can be attributed to the nearly complete localization of the isotropic 4f-shell and singly occupied magnetic orbital (Π*) of the nitronyl nitroxide.  相似文献   

10.
The spin–spin and magnetic properties of two (nitronyl nitroxide)-(di-p-anisylamine-phenothiazine) diradical cation salts, ( DAA-PTZ ) + -NN⋅ MBr4 (M=Ga, Fe), have been investigated. These diradical-cation species were prepared by the cross-coupling of iodophenothiazine DAA-PTZ-I with NN-AuPPh3 followed by oxidation with the thianthrenium radical cation ( TA+⋅ MBr4). These salts were found to be highly stable under aerobic conditions. For the GaBr4 salt, large ferromagnetic intramolecular and small antiferromagnetic intermolecular interactions (J1/kB=+320 K and J2/kB=−2 K, respectively) were observed. The magnetic property of the Fe3+ salt was analyzed by using a six-spin model assuming identical intramolecular exchange interaction (J3/kB=+320 K) and the other exchange interactions (J4/kB=−7 K and J5/kB=−4 K). A significant color change was observed in the UV/Vis/NIR absorption spectra upon electrochemical oxidation of the doublet DAA-PTZ-NN to the triplet ( DAA-PTZ ) + -NN .  相似文献   

11.
A chelate complex of zinc(II) and 2,2′-bipyridine-6,6′-diyl bis(tert-butyl nitroxide) (bpybNO) with a metal/ligand ratio of 1/2 was structurally characterized to be [Zn(bpybNO)2][Zn(hfac)3]2, where Hhfac stands for 1,1,1,5,5,5-hexafluoropentane-2,4-dione. The magnetic susceptibility measurement indicates the presence of considerable antiferromagnetic interaction among the four S = 1/2 spins. The exchange parameter J was estimated as 2J/kB = −103(1) K, on the basis of a tetrahedral coupling model. The antiferromagnetic coupling is stronger after complexation than before. The density-functional theory calculation on related model compounds supports the present analysis and clarified the role of the zinc ion as a superexchange coupler.  相似文献   

12.
Four Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized and structurally characterized: {Ln(hfac)3[NITPh(MeO)2]2} (Ln = Eu( 1 ), Gd( 2 ), Tb( 3 ), Dy( 4 ); NITPh(MeO)2 = 2‐(3′,4′‐dimethoxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide; hfac = hexafluoroacetylacetonate). The single‐crystal X‐ray diffraction analysis shows that these complexes have similar mononuclear trispin structures, in which central Ln(III) ion is eight‐coordinated by two O‐atoms from two nitroxide groups and six O‐atoms from three hfac anions. The variable temperature magnetic susceptibility study reveals that there exist ferromagnetic interactions between Gd(III) and the radicals, and antiferromagnetic interactions between two radicals (JGd‐Rad = 3.40 cm?1, JRad‐Rad = ?9.99 cm?1) in complex 2 . Meanwhile, antiferromagnetic interactions are estimated between Eu(III) (or Dy(III)) and radicals in complexes 1 and 4 , and ferromagnetic interaction between Tb(III) and radicals in complex 3 , respectively.  相似文献   

13.
The TTTA ? Cu(hfac)2 polymer ( 1 ; in which TTTA=1,3,5‐trithia‐2,4,6‐triazapentalenyl, and hfac=(1,1,1,5,5,5)‐hexafluoroacetylacetonate) is one of the most prominent examples of the rational use of the ‘metal–radical’ synthetic approach to achieve ferromagnetic interactions. Experimentally, the magnetic topology of 1 could not be fully deciphered. Herein, the first‐principles bottom‐up procedure was applied to elucidate the nature and strength of the magnetic JAB exchange interactions present in 1 . The computed JAB values give rise to a 2D magnetic topology of ferromagnetic dimers (+11.9 cm?1) coupled through weaker antiferromagnetic interactions (?3.0 and ?3.2 cm?1) in two different spatial directions. The hitherto unknown origin of the antiferromagnetic interdimer interactions is thus unveiled. By using the 2D magnetic topology, the agreement between calculated and experimental χT(T) data is extraordinary. In the metal–radical TTTA ? Cu(hfac)2 compound, the computational model transcends the local dimer cluster model owing to strong interactions between metal centers and organic radicals, thereby creating a de facto biradical. In addition, it is shown that the magnetic topology cannot be inferred from the polymeric [TTTA ??? Cu(hfac)2]n crystal motif, that is, from its chemical coordination pattern. Instead, one should think in terms of magnetic building blocks, namely, the de facto biradicals.  相似文献   

14.
Employing nitronyl nitroxide lanthanide(III) complexes as metallo‐ligands allowed the efficient and highly selective preparation of three series of unprecedented hetero‐tri‐spin (Cu?Ln‐radical) one‐dimensional compounds. These 2p–3d–4f spin systems, namely [Ln3Cu(hfac)11(NitPhOAll)4] (LnIII=Gd 1Gd , Tb 1Tb , Dy 1Dy ; NitPhOAll=2‐(4′‐allyloxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide), [Ln3Cu(hfac)11(NitPhOPr)4] (LnIII=Gd 2Gd , Tb 2Tb , Dy 2Dy , Ho 2Ho , Yb 2Yb ; NitPhOPr=2‐(4′‐propoxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) and [Ln3Cu(hfac)11(NitPhOBz)4] (LnIII=Gd 3Gd , Tb 3Tb , Dy 3Dy ; NitPhOBz=2‐(4′‐benzyloxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide) involve O‐bound nitronyl nitroxide radicals as bridging ligands in chain structures with a [Cu‐Nit‐Ln‐Nit‐Ln‐Nit‐Ln‐Nit] repeating unit. The dc magnetic studies show that ferromagnetic metal–radical interactions take place in these hetero‐tri‐spin chain complexes, these and the next‐neighbor interactions have been quantified for the Gd derivatives. Complexes 1Tb and 2Tb exhibit frequency dependence of ac magnetic susceptibilities, indicating single‐chain magnet behavior.  相似文献   

15.
《化学:亚洲杂志》2017,12(22):2929-2941
In contrast to diradicals connected by alternant hydrocarbons, only a few studies on those connected by nonalternant hydrocarbons have been reported. The syntheses, structures, and magnetic properties of azulene‐1,3‐diyl linked bis(nitronyl nitroxide) (NN2Az) and bis(iminonitroxide) (IN2Az) diradicals and their Cu(hfac)2 (hfac=hexafluoroacetylacetonate) complexes were investigated. NN2Az was shown to have an intramolecular ferromagnetic interaction with J obs/k B=+10.0 K (H =−2J S 1 ⋅S 2) between (nitronyl nitroxide) spins, whereas IN2Az was estimated to have a much weaker intramolecular magnetic interaction. The reactions of NN2Az and IN2Az with Cu(hfac)2 gave a 1:2 [{Cu(hfac)2}2(NN2Az)] complex and a 1:1 [Cu(hfac)2(IN2Az)] ⋅ C6H12 complex, respectively. [{Cu(hfac)2}2(NN2Az)] showed strong intramolecular antiferromagnetic interactions (J 1‐Cu‐R/k B≈−800 K, J 2‐Cu‐R/k B≈−500 K) between the CuII spins and the coordinating NN spins, whereas [Cu(hfac)2(IN2Az)] exhibited a ferromagnetic exchange interaction (J obs‐Cu‐R/k B=+114 K) between the CuII spin and the imino‐coordinated iminonitroxide spin.  相似文献   

16.
Four new compounds of formulas [Cu(hfac)2(L)] (1), [Ni(hfac)2(L)] (2), [{Cu(hfac)2}2(µ-L)]·2CH3OH (3) and [{Ni(hfac)2}2(µ-L)]·2CH3CN (4) [Hhfac = hexafluoroacetylacetone and L = 3,6-bis(picolylamino)-1,2,4,5-tetrazine] have been prepared and their structures determined by X-ray diffraction on single crystals. Compounds 1 and 2 are isostructural mononuclear complexes where the metal ions [copper(II) (1) and nickel(II) (2)] are six-coordinated in distorted octahedral MN2O4 surroundings which are built by two bidentate hfac ligands plus another bidentate L molecule. This last ligand coordinates to the metal ions through the nitrogen atoms of the picolylamine fragment. Compounds 3 and 4 are centrosymmetric homodinuclear compounds where two bidentate hfac units are the bidentate capping ligands at each metal center and a bis-bidentate L molecule acts as a bridge. The values of the intramolecular metal···metal separation are 7.97 (3) and 7.82 Å (4). Static (dc) magnetic susceptibility measurements were carried out for polycrystalline samples 1–4 in the temperature range 1.9–300 K. Curie law behaviors were observed for 1 and 2, the downturn of χMT in the low temperature region for 2 being due to the zero-field splitting of the nickel(II) ion. Very weak [J = −0.247(2) cm−1] and relatively weak intramolecular antiferromagnetic interactions [J = −4.86(2) cm−1] occurred in 3 and 4, respectively (the spin Hamiltonian being defined as H = −JS1·S2). Simple symmetry considerations about the overlap between the magnetic orbitals across the extended bis-bidentate L bridge in 3 and 4 account for their magnetic properties.  相似文献   

17.
In spite of achievement of a lot of Ln-radical SMMs, how to improve magnetic behavior of Ln-radical system remains challenging. Here, two series of Ln-radical complexes have successfully been built using an imino nitroxide biradical, namely, [Ln2(hfac)6(ImPhPyobis)2] (LnIII=Gd 1 , Tb 2 , Dy 3 ) and [Ln2Cu2(hfac)10(ImPhPyobis)2] (LnIII=Gd 4 , Dy 5 ; hfac=hexafluoroacetylacetonate and ImPhPyobis=5-(4-oxypyridinium-1-yl)-1,3-bis(1’-oxyl-4’,4’,5’,5’-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene). For these biradical-metal complexes, two imino nitroxide biradicals bind two Ln(III) ions via their oxygen atoms coming from 4-oxypyridinium units to produce a binuclear {Ln2O2} unit. Those imino nitroxide groups are free for complexes 1 – 3 , however one of imino nitroxide groups of the biradical is ligated to the copper(II) ion for complexes 4 and 5 . The distinct magnetic relaxation behaviors are observed for two Dy derivatives, as revealed by ac magnetic studies: complex 3 presents one magnetic process with the effective energy barrier(Ueff) of 74.0 K while complex 5 exhibits dual relaxation processes with Ueff values for the fast- and slow-relaxation being 20.2 K and 30.9 K, respectively, which implies that the second coordination sphere of Dy ion plays a critical role for magnetic relaxation.  相似文献   

18.
《Polyhedron》2007,26(9-11):1890-1894
We have designed and synthesized new biradicals of p-phenylene-bis(nitronyl nitroxide) substituted with two methoxy groups at 2,3- (2) and 2,5-positions (3). A parent biradical p-phenylene-bis(nitronyl nitroxide) (1) has intramolecular antiferromagnetic exchange interaction of 2J/kB = −104 K  −106 K with a torsion angle of 28.5° between the phenyl and the imidazole rings of nitronyl nitroxide. X-ray crystal structure analysis shows that the bulky substituents in 2 and 3 give large torsion angles of 65–70°. The larger torsion angles should weaken the magnitude of intramolecular exchange interactions, which is attributed to a decrease in π-conjugation over the p-phenylene and the radical groups. Magnetic susceptibility measurements indicate that the intramolecular exchange interactions in 2 and 3 are severely weakened to about 6% of that in 1, 2J/kB = −6 K  −8 K. The relation between the torsion angle and the intramolecular exchange interaction is consistent with DFT calculations. The ground-state singlet biradicals with suppressed intramolecular exchange interactions can be a building block for exotic exchange-coupled spin systems as predicted in our theoretical studies.  相似文献   

19.
While the blocking barrier (Ueff) and blocking temperature (TB) for “Dysprocenium” SIMs have been increased beyond liquid N2 temperature, device fabrication of these molecules remains a challenge as low-coordinate Ln3+ complexes are very unstable. Encapsulating the lanthanide ion inside a cage such as a fullerene (called endohedral metallofullerene or EMF) opens up a new avenue leading to several Ln@EMF SMMs. The ab initio CASSCF calculations play a pivotal role in identifying target metal ions and suitable cages in this area. Encouraged by our earlier prediction on Ln2@C79N, which was verified by experiments, here we have undertaken a search to enhance the exchange coupling in this class of molecules beyond the highest reported value. Using DFT and ab initio calculations, we have studied a series of Gd2@C2n (30 ≤ 2n ≤ 80), where an antiferromagnetic JGd⋯Gd of −43 cm−1 was found for a stable Gd2@C38-D3h cage. This extremely large and exceptionally rare 4f⋯4f interaction results from a direct overlap of 4f orbitals due to the confinement effect. In larger cages such as Gd2@C60 and Gd2@C80, the formation of two centre-one-electron (2c-1e) Gd–Gd bonds is perceived. This results in a radical formation in the fullerene cage leading to its instability. To avoid this, we have studied heterofullerenes where one of the carbon atoms is replaced by a nitrogen atom. Specifically, we have studied Ln2@C59N and Ln2@C79N, where strong delocalisation of the electron yields a mixed valence-like behaviour. This suggests a double-exchange (B) is operational, and CASSCF calculations yield a B value of 434.8 cm−1 and resultant JGd–rad of 869.5 cm−1 for the Gd2@C59N complex. These parameters are found to be two times larger than the world-record J reported for Gd2@C79N. Further ab initio calculations reveal an unprecedented Ucal of 1183 and 1501 cm−1 for Dy2@C59N and Tb2@C59N, respectively. Thus, this study offers strong exchange coupling as criteria for new generation SMMs as the existing idea of enhancing the blocking barrier via crystal field modulation has reached its saturation point.

Using ab initio calculations, we have made some robust predictions towards lanthanofullerene SMMs exhibiting remarkable characteristics.  相似文献   

20.
Four radical–Ln(III)–radical complexes, [Ln(hfac)3(NITPhSCH3)2] (Ln?=?Gd (1), Dy (2), Er (3), Ho (4); hfac?=?hexafluoroacetylacetonate; NITPhSCH3?=?4′-thiomethylphenyl-4,4,5,5tetramethyl-imidazoline-1-oxyl-3-oxide), have been synthesized, and structurally and magnetically characterized. The X-ray crystal structures show that the structures of the four complexes are similar, consisting of isolated molecules in which Ln(III) ions are coordinated by six oxygen atoms from three hfac and two oxygen atoms from nitronyl radicals. The temperature dependencies of magnetic susceptibilities for the four complexes show that in the Gd(III) complex, ferromagnetic interactions between Gd(III)–radical and antiferromagnetic interactions between the radicals coexist with J Rad–Gd?=?1.09?cm?1, J Rad–Rad?=??1.85?cm?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号