首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micro-Raman investigations of mixed gas hydrates   总被引:2,自引:0,他引:2  
We report laser Raman spectroscopic measurements on mixed hydrates (clathrates), with guest molecules tetrahydrofuran (THF) and methane (CH4), at ambient pressure and at temperatures from 175 to 280 K. Gas hydrates were synthesized with different concentrations of THF ranging from 5.88 to 1.46 mol%. In all cases THF molecules occupied the large cages of sII hydrate. The present studies demonstrate formation of sII clathrates with CH4 molecules occupying unfilled cages for concentrations of THF ranging from 5.88 to 2.95 mol%. The Raman spectral signature of hydrates with 1.46 mol% THF are distinctly different; hydrate growth was non-uniform and structural transformation occurred from sII to sI prior to clathrate melting.  相似文献   

2.
常见客体分子对笼型水合物晶格常数的影响   总被引:1,自引:0,他引:1  
Natural gas hydrates are considered as ideal alternative energy resources for the future, and the relevant basic and applied research has become more attractive in recent years. The influence of guest molecules on the hydrate crystal lattice parameters is of great significances to the understanding of hydrate structural characteristics, hydrate formation/decomposition mechanisms, and phase stability behaviors. In this study, we test a series of artificial hydrate samples containing different guest molecules (e.g. methane, ethane, propane, iso-butane, carbon dioxide, tetrahydrofuran, methane + 2, 2-dimethylbutane, and methane + methyl cyclohexane) by a low-temperature powder X-ray diffraction (PXRD). Results show that PXRD effectively elucidates structural characteristics of the natural gas hydrate samples, including crystal lattice parameters and structure types. The relationships between guest molecule sizes and crystal lattice parameters reveal that different guest molecules have different controlling behaviors on the hydrate types and crystal lattice constants. First, a positive correlation between the lattice constants and the van der Waals diameters of homologous hydrocarbon gases was observed in the single-guest-component hydrates. Small hydrocarbon homologous gases, such as methane and ethane, tended to form sI hydrates, whereas relatively larger molecules, such as propane and iso-butane, generated sⅡ hydrates. The hydrate crystal lattice constants increased with increasing guest molecule size. The types of hydrates composed of oxygen-containing guest molecules (such as CO2 and THF) were also controlled by the van der Waals diameters. However, no positive correlation between the lattice constants and the van der Waals diameters of guest molecules in hydrocarbon hydrates was observed for CO2 hydrate and THF hydrate, probably due to the special interactions between the guest oxygen atoms and hydrate "cages". Furthermore, the influences of the macromolecules and auxiliary small molecules on the lengths of the different crystal axes of the sH hydrates showed inverse trends. Compared to the methane + 2, 2-dimethylbutane hydrate sample, the length of the a-axis direction of the methane + methyl cyclohexane hydrate sample was slightly smaller, whereas the length of the c-axis direction was slightly longer. The crystal a-axis length of the sH hydrate sample formed with nitrogen molecules was slightly longer, whereas the c-axis was shorter than that of the methane + 2, 2-dimethylbutane hydrate sample at the same temperature.  相似文献   

3.
Guest-host hydrogen bonding in clathrate hydrates occurs when in addition to the hydrophilic moiety which causes the molecule to form hydrates under high pressure-low temperature conditions, the guests contain a hydrophilic, hydrogen bonding functional group. In the presence of carbon dioxide, ethanol clathrate hydrate has been synthesized with 10% of large structure I (sI) cages occupied by ethanol. In this work, we use molecular dynamics simulations to study hydrogen bonding structure and dynamics in this binary sI clathrate hydrate in the temperature range of 100-250 K. We observe that ethanol forms long-lived (>500 ps) proton-donating and accepting hydrogen bonds with cage water molecules from both hexagonal and pentagonal faces of the large cages while maintaining the general cage integrity of the sI clathrate hydrate. The presence of the nondipolar CO(2) molecules stabilizes the hydrate phase, despite the strong and prevalent alcohol-water hydrogen bonding. The distortions of the large cages from the ideal form, the radial distribution functions of the guest-host interactions, and the ethanol guest dynamics are characterized in this study. In previous work through dielectric and NMR relaxation time studies, single crystal x-ray diffraction, and molecular dynamics simulations we have observed guest-water hydrogen bonding in structure II and structure H clathrate hydrates. The present work extends the observation of hydrogen bonding to structure I hydrates.  相似文献   

4.
Molecular dynamics simulations are performed to study the growth mechanism of CH4-CO2 mixed hydrate in xCO2= 75%, xCO2= 50%, and xCO2= 25% systems at T = 250 K, 255 K and 260 K, respectively. Our simulation results show that the growth rate of CH4-CO2 mixed hydrate increases as the CO2 concentration in the initial solution phase increases and the temperature decreases. Via hydrate formation, the composition of CO2 in hydrate phase is higher than that in initial solution phase and the encaging capacity of CO2 in hydrates increases with the decrease in temperature. By analysis of the cage occupancy ratio of CH4 molecules and CO2 molecules in large cages to small cages, we find that CO2 molecules are preferably encaged into the large cages of the hydrate crystal as compared with CH4 molecules. Interestingly, CH4 molecules and CO2 molecules frequently replace with each other in some particular cage sites adjacent to hydrate/solution interface during the crystal growth process. These two species of guest molecules eventually act to stabilize the newly formed hydrates, with CO2 molecules occupying large cages and CH4 molecules occupying small cages in hydrate.  相似文献   

5.
Molecular dynamics simulations are performed to study the growth mechanism of CH4-CO2 mixed hydrate in xco2 = 75%, xco2 = 50%, and zco2 = 25% systems at T = 250 K, 255 K and 260 K, respectively. Our simulation results show that the growth rate of CH4-CO2 mixed hydrate increases as the CO2 concentration in the initial solution phase increases and the temperature decreases. Via hydrate formation, the composition of CO2 in hydrate phase is higher than that in initial solution phase and the encaging capacity of CO2 in hydrates increases with the decrease in temperature. By analysis of the cage occupancy ratio of CH4 molecules and CO2 molecules in large cages to small cages, we find that CO2 molecules are preferably encaged into the large cages of the hydrate crystal as compared with CH4 molecules. Interestingly, CH4 molecules and CO2 molecules frequently replace with each other in some particular cage sites adjacent to hydrate/solution interface during the crystal growth process. These two species of guest molecules eventually act to stabilize the newly formed hydrates, with CO2 molecules occupying large cages and CH4 molecules occupying small cages in hydrate.  相似文献   

6.
Using molecular dynamics simulations on the microsecond time scale, we investigate the nucleation and growth mechanisms of CO(2) hydrates in a water/CO(2)/silica three-phase system. Our simulation results indicate that the CO(2) hydrate nucleates near the three-phase contact line rather than at the two-phase interfaces and then grows along the contact line to form an amorphous crystal. In the nucleation stage, the hydroxylated silica surface can be understand as a stabilizer to prolong the lifetime of adsorbed hydrate cages that interact with the silica surface by hydrogen bonding, and the adsorbed cages behave as the nucleation sites for the formation of an amorphous CO(2) hydrate. After nucleation, the nucleus grows along the three-phase contact line and prefers to develop toward the CO(2) phase as a result of the hydrophilic nature of the modified solid surface and the easy availability of CO(2) molecules. During the growth process, the population of sI cages in the formed amorphous crystal is found to increase much faster than that of sII cages, being in agreement with the fact that only the sI hydrate can be formed in nature for CO(2) molecules.  相似文献   

7.
Crystal growth simulations of gas hydrates have suggested that hydrate cages may occasionally be occupied by H(2)O rather than guest molecules, leaving interstitial defects within the hydrate crystal. Further inspection of the behavior of these interstitial H(2)O molecules has revealed that they are relatively highly mobile entities within a gas hydrate. In this paper, we report these observations and examine the molecular mechanisms responsible for the transport of these interstitial molecules through hydrate crystals. Four distinct pathways for the H(2)O molecule transport between cages are found, each facilitated by the presence of empty cages. The relative richness of the observed behavior of interstitial defects suggests that interstitial diffusion could be an important mechanism for the mass transport of H(2)O molecules through gas hydrates.  相似文献   

8.
The mechanism by which safranine O (SFO), an ice growth inhibitor, halts the growth of single crystal tetrahydrofuran (THF) clathrate hydrates was explored using microfluidics coupled with cold stages and fluorescence microscopy. THF hydrates grown in SFO solutions exhibited morphology changes and were shaped as truncated octahedrons or hexagons. Fluorescence microscopy and microfluidics demonstrated that SFO binds to the surface of THF hydrates on specific crystal planes. Cryo-TEM experiments of aqueous solutions containing millimolar concentrations of SFO exhibited the formation of bilayered lamellae with an average thickness of 4.2±0.2 nm covering several μm2. Altogether, these results indicate that SFO forms supramolecular lamellae in solution, which might bind to the surface of the hydrate and inhibit further growth. As an ice and hydrate inhibitor, SFO may bind to the surface of these crystals via ordered water molecules near its amine and methyl groups, similar to some antifreeze proteins.  相似文献   

9.
In this study, we investigate the crystal structures and phase equilibria of butanols+CH4+H2O systems to reveal the hydroxy group positioning and its effects on hydrate stability. Four clathrate hydrates formed by structural butanol isomers are identified with powder X‐ray diffraction (PXRD). In addition, Raman spectroscopy is used to analyze the guest distributions and inclusion behaviors of large alcohol molecules in these hydrate systems. The existence of a free OH indicates that guest molecules can be captured in the large cages of structure II hydrates without any hydrogen‐bonding interactions between the hydroxy group of the guests and the water‐host framework. However, Raman spectra of the binary (1‐butanol+CH4) hydrate do not show the free OH signal, indicating that there could be possible hydrogen‐bonding interactions between the guests and hosts. We also measure the four‐phase equilibrium conditions of the butanols+CH4+H2O systems.  相似文献   

10.
Owing to a stable and porous cage structure, natural gas hydrates can store abundant methane and serve as a potentially natural gas resource. However, the microscopic mechanism of how hydrate crystalline grows has not been fully explored, especially for the structure containing different guest molecules. Hence, we adopt density functional theory (DFT) to investigate the fusion process of structure I hydrates with CH4/C2H6 guest molecules from mono-cages to triple-cages. We find that the volume of guest molecules affects the stabilities of large (51262, L) and small (512, s) cages, which are prone to capture C2H6 and CH4, respectively. Mixed double cages (small cage and large cage) with the mixed guest molecules have the highest stability and fusion energy. The triangular triple cages exhibit superior stability because of the three shared faces, and the triangular mixed triple cages (large-small-large) structure with the mixed guest molecules shows the highest stability and fusion energy in the triple-cage fusion process. These results can provide theoretical insights into the growth mechanism of hydrates with other mono/mixed guest molecules for further development and application of these substances.  相似文献   

11.
Methane storage in structure H (sH) clathrate hydrates is attractive due to the relatively higher stability of sH as compared to structure I methane hydrate. The additional stability is gained without losing a significant amount of gas storage density as happens in the case of structure II (sII) methane clathrate. Our previous work has showed that the selection of a specific large molecule guest substance (LMGS) as the sH hydrate former is critical in obtaining the optimum conditions for crystallization kinetics, hydrate stability, and methane content. In this work, molecular dynamics simulations are employed to provide further insight regarding the dependence of methane occupancy on the type of the LMGS and pressure. Moreover, the preference of methane molecules to occupy the small (5(12)) or medium (4(3)5(6)6(3)) cages and the minimum cage occupancy required to maintain sH clathrate mechanical stability are examined. We found that thermodynamically, methane occupancy depends on pressure but not on the nature of the LMGS. The experimentally observed differences in methane occupancy for different LMGS may be attributed to the differences in crystallization kinetics and/or the nonequilibrium conditions during the formation. It is also predicted that full methane occupancies in both small and medium clathrate cages are preferred at higher pressures but these cages are not fully occupied at lower pressures. It was found that both small and medium cages are equally favored for occupancy by methane guests and at the same methane content, the system suffers a free energy penalty if only one type of cage is occupied. The simulations confirm the instability of the hydrate when the small and medium cages are empty. Hydrate decomposition was observed when less than 40% of the small and medium cages are occupied.  相似文献   

12.
在253K和16MPa的压力下,于实验室内合成了氮气水合物,用显微共焦拉曼光谱对其N-N和O-H键伸缩振动的光谱特征进行了研究.结果表明,氮气水合物中的N-N和O—H键的拉曼峰分别为2322.4和3092.1cm^-1,与天然的空气水合物中的数据十分接近.另外,还测定了液氮和溶解于水中的氮分子中N—N键的拉曼峰值,分别为2326.6和2325.0cm^-1.氮气笼型水合物分解的拉曼谱图表明,氮分子同时进入水合物的大笼和小笼中,但由于氮分子在大、小笼中的环境氛围十分接近,其拉曼位移相差不大,故拉曼谱图只能显示N—N键伸缩振动一个峰.  相似文献   

13.
We discover new structure II (sII) hydrate forming agents of two C4H8O molecules (2-methyl-2-propen-1-ol and 2-butanone) and report the abnormal structural transition of binary C4H8O+CH4 hydrates between structure I (sI) and sII with varying temperature and pressure conditions. In both (2-methyl-2-propen-1-ol+CH4) and (2-butanone+CH4) systems, the phase boundary of the two different hydrate phases (sI and sII) exists at the slope change of the phase-equilibrium curve in the semi-logarithmic plots. We confirm the crystal structures of two hydrates synthesized at low (278 K and 6 MPa) and high (286 K and 15 MPa) temperature and pressure conditions by using high-resolution powder diffraction and Raman spectroscopy. 2-Methyl-2-propen-1-ol and 2-butanone can occupy the large cages of sII hydrate at low temperature and pressure conditions; however, they are excluded from the hydrate phase at high temperature and pressure conditions, resulting in the formation of pure sI CH4 hydrate.  相似文献   

14.
15.
Gas hydrates represent an attractive way of storing large quantities of gas such as methane and carbon dioxide, although to date there has been little effort to optimize the storage capacity and to understand the trade‐offs between storage conditions and storage capacity. In this work, we present estimates for gas storage based on the ideal structures, and show how these must be modified given the little data available on hydrate composition. We then examine the hypothesis based on solid‐solution theory for clathrate hydrates as to how storage capacity may be improved for structure II hydrates, and test the hypothesis for a structure II hydrate of THF and methane, paying special attention to the synthetic approach used. Phase equilibrium data are used to map the region of stability of the double hydrate in PT space as a function of the concentration of THF. In situ high‐pressure NMR experiments were used to measure the kinetics of reaction between frozen THF solutions and methane gas, and 13C MAS NMR experiments were used to measure the distribution of the guests over the cage sites. As known from previous work, at high concentrations of THF, methane only occupies the small cages in structure II hydrate, and in accordance with the hypothesis posed, we confirm that methane can be introduced into the large cage of structure II hydrate by lowering the concentration of THF to below 1.0 mol %. We note that in some preparations the cage occupancies appear to fluctuate with time and are not necessarily homogeneous over the sample. Although the tuning mechanism is generally valid, the composition and homogeneity of the product vary with the details of the synthetic procedure. The best results, those obtained from the gas–liquid reaction, are in good agreement with thermodynamic predictions; those obtained for the gas–solid reaction do not agree nearly as well.  相似文献   

16.
Experimentally determined equilibrium phase relations are reported for the system H2-THF-H2O as a function of aqueous tetrahydrofuran (THF) concentration from 260 to 290 K at pressures up to 45 MPa. Data are consistent with the formation of cubic structure-II (CS-II) binary H2-THF clathrate hydrates with a stoichiometric THF-to-water ratio of 1:17, which can incorporate modest volumes of molecular hydrogen at elevated pressures. Direct compositional analyses of the clathrate phase, at both low (0.20 mol %) and stoichiometric (5.56 mol %) initial THF aqueous concentrations, are consistent with observed phase behavior, suggesting full occupancy of large hexakaidecahedral (51264) clathrate cavities by THF, coupled with largely complete (80-90%) filling of small dodecahedral (512) cages by single H2 molecules at pressures of >30 MPa, giving a clathrate formula of (H2) < or =2.THF.17H2O. Results should help to resolve the current controversy over binary H2-THF hydrate hydrogen contents; data confirm recent reports that suggest a maximum of approximately 1 mass % H2, this contradicting values of up to 4 mass % previously claimed for comparable conditions.  相似文献   

17.
Tetrahydrofuran (THF) is one of the most widely used analogues for gas hydrates as well as a commonly used additive for reducing the formation pressure of a given hydrate process. Hydrates are also currently being investigated as storage materials for hydrogen as well as materials for hydrogen separations. Here we present a thermodynamic model, based on the CSMGem framework, that accurately captures the phase behavior of various hydrates containing THF and hydrogen. The model uses previously regressed parameters for components other than THF and H2, and can reproduce hydrate formation conditions for a number of hydrates containing THF and/or hydrogen (simple THF, THF + CH4, THF + N2, THF + CO2, THF + H2, CH4 + H2, C2H6 + H2 and C3H8 + H2). The incorporation of THF and H2 within this model framework will serve as a valuable tool for hydrate scenarios involving either of these components.  相似文献   

18.
To provide improved understanding of guest–host interactions in clathrate hydrates, we present some correlations between guest chemical structures and observations on the corresponding hydrate properties. From these correlations it is clear that directional interactions such as hydrogen bonding between guest and host are likely, although these have been ignored to greater or lesser degrees because there has been no direct structural evidence for such interactions. For the first time, single‐crystal X‐ray crystallography has been used to detect guest–host hydrogen bonding in structure II (sII) and structure H (sH) clathrate hydrates. The clathrates studied are the tert‐butylamine (tBA) sII clathrate with H2S/Xe help gases and the pinacolone + H2S binary sH clathrate. X‐ray structural analysis shows that the tBA nitrogen atom lies at a distance of 2.64 Å from the closest clathrate hydrate water oxygen atom, whereas the pinacolone oxygen atom is determined to lie at a distance of 2.96 Å from the closest water oxygen atom. These distances are compatible with guest–water hydrogen bonding. Results of molecular dynamics simulations on these systems are consistent with the X‐ray crystallographic observations. The tBA guest shows long‐lived guest–host hydrogen bonding with the nitrogen atom tethered to a water HO group that rotates towards the cage center to face the guest nitrogen atom. Pinacolone forms thermally activated guest–host hydrogen bonds with the lattice water molecules; these have been studied for temperatures in the range of 100–250 K. Guest–host hydrogen bonding leads to the formation of Bjerrum L‐defects in the clathrate water lattice between two adjacent water molecules, and these are implicated in the stabilities of the hydrate lattices, the water dynamics, and the dielectric properties. The reported stable hydrogen‐bonded guest–host structures also tend to blur the longstanding distinction between true clathrates and semiclathrates.  相似文献   

19.
Clathrate hydrates are of great importance in many aspects. However, hydrate formation and dissociation mechanisms, essential to all hydrate applications, are still not well understood due to the limitations of experimental techniques capable of providing dynamic and structural information on a molecular level. NMR has been shown to be a powerful tool to noninvasively measure molecular level dynamic information. In this work, we measured nuclear magnetic resonance (NMR) spin lattice relaxation times (T1's) of tetrahydrofuran (THF) in liquid deuterium oxide (D2O) during THF hydrate formation and dissociation. At the same time, we also used magnetic resonance imaging (MRI) to monitor hydrate formation and dissociation patterns. The results showed that solid hydrate significantly influences coexisting fluid structure. Molecular evidence of residual structure was identified. Hydrate formation and dissociation mechanisms were proposed based on the NMR/MRI observations.  相似文献   

20.
Vibrational frequencies of guest molecules in clathrate hydrates reflect the molecular environment and dynamical behavior of molecules. A detailed understanding of the mechanism for the vibrational frequency changes of the guest molecules in the clathrate hydrate cages is still incomplete. In this study, molecular vibrations of methane molecules in a structure I clathrate hydrate are calculated from ab initio molecular dynamics simulation. The vibrational spectra of methane are computed by Fourier transform of autocorrelation functions, which reveal distinct separation of each vibrational mode. Calculated symmetric and asymmetric stretching vibrational frequencies of methane molecules are lower in the large cages than in the small cages (8 and 16 cm(-1) for symmetric and asymmetric stretching, respectively). These changes are closely linked with the C-H bond length. The vibrational frequencies for the bending and rocking vibrational modes nearly overlap in each of the cages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号