共查询到20条相似文献,搜索用时 15 毫秒
1.
The heterodimeric complex between retinoic X receptor alpha (RXRα) and peroxisome proliferator-activated receptor gamma (PPARγ) is one of the most important and predominant regulatory systems, controlling lipid metabolism by binding to specific DNA promoter regions. X-ray and molecular dynamics (MD) simulations have revealed the average conformation adopted by the RXRα-PPARγ heterodimer bound to DNA, providing information about how multiple domains communicate to regulate receptor properties. However, knowledge of the energetic basis of the protein-ligand and protein-protein interactions is still lacking. Here we explore the structural and energetic mechanism of RXRα-PPARγ heterodimer bound or unbound to DNA and forming complex with co-crystallized ligands (rosiglitazone and 9-cis-retinoic acid) through microsecond MD simulations, molecular mechanics generalized Born surface area binding free energy calculations, principal component analysis, the free energy landscape, and correlated motion analysis. Our results suggest that DNA binding alters correlated motions and conformational mobility within RXRα–PPARγ system that impact the dimerization and the binding affinity on both receptors. Intradomain correlated motions denotes a stronger correlation map for RXRα-PPARγ-DNA than RXRα-PPARγ, involving residues at the ligand binding site. In addition, our results also corroborated the greater role of PPARγ in regulation of the free and bound DNA state. 相似文献
2.
Ming Liu Gan Wang Runjia Xu Chuanbin Shen Heyu Ni Ren Lai 《Molecules (Basel, Switzerland)》2021,26(16)
Soy diet is thought to help prevent cardiovascular diseases in humans. Isoflavone, which is abundant in soybean and other legumes, has been reported to possess antiplatelet activity and potential antithrombotic effect. Our study aims to elucidate the potential target of soy isoflavone in platelet. The anti-thrombosis formation effect of genistein and daidzein was evaluated in ex vivo perfusion chamber model under low (300 s−1) and high (1800 s−1) shear forces. The effect of genistein and daidzein on platelet aggregation and spreading was evaluated with platelets from both wildtype and GPIbα deficient mice. The interaction of these soy isoflavone with 14-3-3ζ was detected by surface plasmon resonance (SPR) and co-immunoprecipitation, and the effect of αIIbβ3-mediated outside-in signaling transduction was evaluated by western blot. We found both genistein and daidzein showed inhibitory effect on thrombosis formation in perfusion chamber, especially under high shear force (1800 s−1). These soy isoflavone interact with 14-3-3ζ and inhibited both GPIb-IX and αIIbβ3-mediated platelet aggregation, integrin-mediated platelet spreading and outside-in signaling transduction. Our findings indicate that 14-3-3ζ is a novel target of genistein and daidzein. 14-3-3ζ, an adaptor protein that regulates both GPIb-IX and αIIbβ3-mediated platelet activation is involved in soy isoflavone mediated platelet inhibition. 相似文献
3.
Zubao Gan Deyun Cui Hongyun Zhang Ying Feng Liying Huang Yingying Gui Lu Gao Zhenlei Song 《Molecules (Basel, Switzerland)》2022,27(15)
(Ph3C)[BPh(F)4]-catalyzed Hosomi-Sakurai allylation of allylsilanes with β,γ-unsaturated α-ketoesters has been developed to give γ,γ-disubstituted α-ketoesters in high yields with excellent chemoselectivity. Preliminary mechanistic studies suggest that trityl cation dominates the catalysis, while the silyl cation plays a minor role. 相似文献
4.
Danielle M. Williams David C. Thorn Christopher M. Dobson Sarah Meehan Sophie E. Jackson Joanna M. Woodcock John A. Carver 《Molecules (Basel, Switzerland)》2021,26(20)
14-3-3 proteins are abundant, intramolecular proteins that play a pivotal role in cellular signal transduction by interacting with phosphorylated ligands. In addition, they are molecular chaperones that prevent protein unfolding and aggregation under cellular stress conditions in a similar manner to the unrelated small heat-shock proteins. In vivo, amyloid β (Aβ) and α-synuclein (α-syn) form amyloid fibrils in Alzheimer’s and Parkinson’s diseases, respectively, a process that is intimately linked to the diseases’ progression. The 14-3-3ζ isoform potently inhibited in vitro fibril formation of the 40-amino acid form of Aβ (Aβ40) but had little effect on α-syn aggregation. Solution-phase NMR spectroscopy of 15N-labeled Aβ40 and A53T α-syn determined that unlabeled 14-3-3ζ interacted preferentially with hydrophobic regions of Aβ40 (L11-H21 and G29-V40) and α-syn (V3-K10 and V40-K60). In both proteins, these regions adopt β-strands within the core of the amyloid fibrils prepared in vitro as well as those isolated from the inclusions of diseased individuals. The interaction with 14-3-3ζ is transient and occurs at the early stages of the fibrillar aggregation pathway to maintain the native, monomeric, and unfolded structure of Aβ40 and α-syn. The N-terminal regions of α-syn interacting with 14-3-3ζ correspond with those that interact with other molecular chaperones as monitored by in-cell NMR spectroscopy. 相似文献
5.
Shinhui Lee Woog Jung Sanung Eom Hye Duck Yeom Heui-Dong Park Junho H. Lee 《Molecules (Basel, Switzerland)》2021,26(9)
Betulinic acid (BA) is a major constituent of Zizyphus seeds that have been long used as therapeutic agents for sleep-related issues in Asia. BA is a pentacyclic triterpenoid. It also possesses various anti-cancer and anti-inflammatory effects. Current commercially available sleep aids typically use GABAergic regulation, for which many studies are being actively conducted. However, few studies have focused on acetylcholine receptors that regulate wakefulness. In this study, we utilized BA as an antagonist of α3β4 nicotinic acetylcholine receptors (α3β4 nAChRs) known to regulate rapid-eye-movement (REM) sleep and wakefulness. Effects of BA on α3β4 nAChRs were concentration-dependent, reversible, voltage-independent, and non-competitive. Site-directed mutagenesis and molecular-docking studies confirmed the binding of BA at the molecular level and showed that the α3 subunit L257 and the β4 subunit I263 residues affected BA binding. These data demonstrate that BA can bind to a binding site different from the site for the receptor’s ligand, acetylcholine (ACh). This suggests that BA may be an effective antagonist that is unaffected by large amounts of ACh released during wakefulness and REM sleep. Based on the above experimental results, BA is likely to be a therapeutically useful sleep aid and sedative. 相似文献
6.
Hypoxia-inducible factor-1α (HIF-1α) is widely distributed in human cells, and it can form different signaling pathways with various upstream and downstream proteins, mediate hypoxia signals, regulate cells to produce a series of compensatory responses to hypoxia, and play an important role in the physiological and pathological processes of the body, so it is a focus of biomedical research. In recent years, various types of HIF-1α inhibitors have been designed and synthesized and are expected to become a new class of drugs for the treatment of diseases such as tumors, leukemia, diabetes, and ischemic diseases. This article mainly reviews the structure and functional regulation of HIF-1α, the modes of action of HIF-1α inhibitors, and the application of HIF-1α inhibitors during the treatment of diseases. 相似文献
7.
Ekaterina A. Verochkina Nadezhda Victorovna Vchislo Igor B. Rozentsveig 《Molecules (Basel, Switzerland)》2021,26(14)
α-Functionalized α,β-unsaturated aldehydes is an important class of compounds, which are widely used in fine organic synthesis, biology, medicine and pharmacology, chemical industry, and agriculture. Some of the 2-substituted 2-alkenals are found to be the key metabolites in plant and animal cells. Therefore, the development of efficient methods for their synthesis attracts the attention of organic chemists. This review focusses on the recent advances in the synthesis of 2-functionally substituted 2-alkenals. The approaches to the preparation of α-alkyl α,β-unsaturated aldehydes are not included in this review. 相似文献
8.
Jenny Spttel Johannes Brockelt Svenja Badekow Sascha Rohn 《Molecules (Basel, Switzerland)》2021,26(7)
Undirected modifications between food proteins and secondary plant metabolites can occur during food processing. The results of covalent interactions can alter the functional and biological properties of the proteins. The present work studied the extent of which covalent conjugation of the bioactive metabolite benzyl isothiocyanate (BITC; a glucosinolate breakdown product) to the whey protein α-lactalbumin affects the protein’s allergenicity. Additional to the immunological analysis of native untreated and BITC-modified α-lactalbumin, the analysis of antigenic properties of proteolytically digested protein derivatives was also performed by high performance thin layer chromatography and immunostaining. As a result of the chemical modifications, structural changes in the protein molecule affected the allergenic properties. In this process, epitopes are destroyed or inactivated, but at the same time, buried epitopes can be exposed or newly formed, so that the net effect was an increase in allergenicity, in this case. Results from the tryptic hydrolysis suggest that BITC conjugation sterically hindered the cleavage sites for the enzyme, resulting in reduced digestibility and allergenicity. Residual antigenicity can be still present as short peptide fragments that provide epitopes. The desire to make food safer for allergy sufferers and to protect sensitized individuals from an allergenic reaction makes it clear that the detection of food antigens is mandatory; especially by considering protein interactions. 相似文献
9.
In complex foods, bioactive secondary plant metabolites (SPM) can bind to food proteins. Especially when being covalently bound, such modifications can alter the structure and, thus, the functional and biological properties of the proteins. Additionally, the bioactivity of the SPM can be affected as well. Consequently, knowledge of the influence of chemical modifications on these properties is particularly important for food processing, food safety, and nutritional physiology. As a model, the molecular structure of conjugates between the bioactive metabolite benzyl isothiocyanate (BITC, a hydrolysis product of the glucosinolate glucotropaeolin) and the whey protein α-lactalbumin (α-LA) was investigated using circular dichroism spectroscopy, anilino-1-naphthalenesulfonic acid fluorescence, and dynamic light scattering. Free amino groups were determined before and after the BITC conjugation. Finally, mass spectrometric analysis of the BITC-α-LA protein hydrolysates was performed. As a result of the chemical modifications, a change in the secondary structure of α-LA and an increase in surface hydrophobicity and hydrodynamic radii were documented. BITC modification at the ε-amino group of certain lysine side chains inhibited tryptic hydrolysis. Furthermore, two BITC-modified amino acids were identified, located at two lysine side chains (K32 and K113) in the amino acid sequence of α-LA. 相似文献
10.
α-Galacto-oligosaccharides (α-GOSs) have great functions as prebiotics and therapeutics. This work established the method of batch synthesis of α-GOSs by immobilized α-galactosidase for the first time, laying a foundation for industrial applications in the future. The α-galactosidase from Aspergillus niger L63 was immobilized as cross-linked enzyme aggregates (CLEAs) nano-biocatalyst through enzyme precipitating and cross-linking steps without using carriers. Among the tested agents, the ammonium sulfate showed high precipitation efficacy and induced regular structures of α-galactosidase CLEAs (Aga-CLEAs) that had been analyzed by scanning electron microscopy and Fourier-transform infrared spectroscopy. Through optimization by response surface methodology, the ammonium sulfate-induced Aga-CLEAs achieved a high activity recovery of around 90% at 0.55 U/mL of enzymes and 36.43 mM glutaraldehyde with cross-linking for 1.71 h. Aga-CLEAs showed increased thermal stability and organic solvent tolerance. The storage ability was also improved since it maintained 74.5% activity after storing at 4 °C for three months, significantly higher than that of the free enzyme (21.6%). Moreover, Aga-CLEAs exhibited excellent reusability in the α-GOSs synthesis from galactose, retaining above 66% of enzyme activity after 10 batch reactions, with product yields all above 30%. 相似文献
11.
Mohammed A. Huneif Seham M. Alqahtani Alqahtani Abdulwahab Sultan A. Almedhesh Mater H. Mahnashi Muhammad Riaz Najm Ur-Rahman Muhammad Saeed Jan Farhat Ullah Muhammad Aasim Abdul Sadiq 《Molecules (Basel, Switzerland)》2022,27(11)
Diabetes mellitus is a metabolic disorder and is a global challenge to the current medicinal chemists and pharmacologists. This research has been designed to isolate and evaluate antidiabetic bioactives from Fragaria indica. The crude extracts, semi-purified and pure bioactives have been used in all in vitro assays. The in vitro α-glucosidase, α-amylase and DPPH free radical activities have been performed on all plant samples. The initial activities showed that ethyl acetate (Fi.EtAc) was the potent fraction in all the assays. This fraction was initially semi-purified to obtain Fi.EtAc 1–3. Among the semi-purified fractions, Fi.EtAc 2 was dominant, exhibiting potent IC50 values in all the in vitro assays. Based on the potency and availability of materials, Fi.EtAc 2 was subjected to further purification to obtain compounds 1 (2,4-dichloro-6-hydroxy-3,5-dimethoxytoluene) and 2 (2-methyl-6-(4-methylphenyl)-2-hepten-4-one). The two isolated compounds were characterized by mass and NMR analyses. The compounds 1 and 2 showed excellent inhibitions against α-glucosidase (21.45 for 1 and 15.03 for 2 μg/mL), α-amylase (17.65 and 16.56 μg/mL) and DPPH free radicals (7.62 and 14.30 μg/mL). Our study provides baseline research for the antidiabetic bioactives exploration from Fragaria indica. The bioactive compounds can be evaluated in animals-based antidiabetic activity in future. 相似文献
12.
Victor S. Batista Adriano Marques Gonalves Nailton M. Nascimento-Júnior 《Molecules (Basel, Switzerland)》2022,27(23)
The neuronal nicotinic acetylcholine receptors (nAChRs) belong to the ligand-gated ion channel (GLIC) group, presenting a crucial role in several biological processes and neuronal disorders. The α4β2 and α7 nAChRs are the most abundant in the central nervous system (CNS), being involved in challenging diseases such as epilepsy, Alzheimer’s disease, schizophrenia, and anxiety disorder, as well as alcohol and nicotine dependencies. In addition, in silico-based strategies may contribute to revealing new insights into drug design and virtual screening to find new drug candidates to treat CNS disorders. In this context, the pharmacophore maps were constructed and validated for the orthosteric sites of α4β2 and α7 nAChRs, through a docking-based Comparative Intermolecular Contacts Analysis (dbCICA). In this sense, bioactive ligands were retrieved from the literature for each receptor. A molecular docking protocol was developed for all ligands in both receptors by using GOLD software, considering GoldScore, ChemScore, ASP, and ChemPLP scoring functions. Output GOLD results were post-processed through dbCICA to identify critical contacts involved in protein-ligand interactions. Moreover, Crossminer software was used to construct a pharmacophoric map based on the most well-behaved ligands and negative contacts from the dbCICA model for each receptor. Both pharmacophore maps were validated by using a ROC curve. The results revealed important features for the ligands, such as the presence of hydrophobic regions, a planar ring, and hydrogen bond donor and acceptor atoms for α4β2. Parallelly, a non-planar ring region was identified for α7. These results can enable fragment-based drug design (FBDD) strategies, such as fragment growing, linking, and merging, allowing an increase in the activity of known fragments. Thus, our results can contribute to a further understanding of structural subunits presenting the potential for key ligand-receptor interactions, favoring the search in molecular databases and the design of novel ligands. 相似文献
13.
The bifurcated σ-hole···σ-hole stacking interactions between organosulfur molecules, which are key components of organic optical and electronic materials, were investigated by using a combined method of the Cambridge Structural Database search and quantum chemical calculation. Due to the geometric constraints, the binding energy of one bifurcated σ-hole···σ-hole stacking interaction is in general smaller than the sum of the binding energies of two free monofurcated σ-hole···σ-hole stacking interactions. The bifurcated σ-hole···σ-hole stacking interactions are still of the dispersion-dominated noncovalent interactions. However, in contrast to the linear monofurcated σ-hole···σ-hole stacking interaction, the contribution of the electrostatic energy to the total attractive interaction energy increases significantly and the dispersion component of the total attractive interaction energy decreases significantly for the bifurcated σ-hole···σ-hole stacking interaction. Another important finding of this study is that the low-cost spin-component scaled zeroth-order symmetry-adapted perturbation theory performs perfectly in the study of the bifurcated σ-hole···σ-hole stacking interactions. This work will provide valuable information for the design and synthesis of novel organic optical and electronic materials. 相似文献
14.
α-Amino acids and α-keto acids are versatile building blocks for the synthesis of several commercially valuable products in the food, agricultural, and pharmaceutical industries. In this study, a novel transamination-like reaction catalyzed by leucine dehydrogenase was successfully constructed for the efficient enzymatic co-synthesis of α-amino acids and α-keto acids. In this reaction mode, the α-keto acid substrate was reduced and the α-amino acid substrate was oxidized simultaneously by the enzyme, without the need for an additional coenzyme regeneration system. The thermodynamically unfavorable oxidation reaction was driven by the reduction reaction. The efficiency of the biocatalytic reaction was evaluated using 12 different substrate combinations, and a significant variation was observed in substrate conversion, which was subsequently explained by the differences in enzyme kinetics parameters. The reaction with the selected model substrates 2-oxobutanoic acid and L-leucine reached 90.3% conversion with a high total turnover number of 9.0 × 106 under the optimal reaction conditions. Furthermore, complete conversion was achieved by adjusting the ratio of addition of the two substrates. The constructed reaction mode can be applied to other amino acid dehydrogenases in future studies to synthesize a wider range of valuable products. 相似文献
15.
Andreas Koschella Thomas Heinze Antje Tied Katja Geitel Chih-Ying Chien Tadahisa Iwata 《Molecules (Basel, Switzerland)》2020,25(22)
Alpha- and beta-linked 1,3-glucans have been subjected to conversion with p-toluenesulfonic acid (tosyl) chloride and triethylamine under homogeneous reaction conditions in N,N-dimethyl acetamide/LiCl. Samples with a degree of substitution of tosyl groups (DSTs) of up to 1.91 were prepared by applying 5 mol reagent per mole repeating unit. Hence, the reactivity of α-1,3-glucan is comparable with cellulose and starch, while the β-1,3-linked glucan curdlan is less reactive. The samples dissolve in aprotic dipolar media independent of the DSTs and possess a solubility in less polar solvents that depends on the DSTs. NMR studies on the tosyl glucans and of the peracylated derivatives showed a preferred tosylation of position 2 of the repeating unit. However, the selectivity is less pronounced compared with starch. It could be concluded that the α-configurated glycosidic bond directs tosyl groups towards position 2. 相似文献
16.
Ivn Ramos-Tomillero Marisa K. Snchez Hortensia Rodríguez Fernando Albericio 《Molecules (Basel, Switzerland)》2021,26(1)
Using the classical Ugi four-component reaction to fuse an amine, ketone, carboxylic acid, and isocyanide, here we prepared a short library of N-alkylated α,α-dialkylglycine derivatives. Due to the polyfunctionality of the dipeptidic scaffold, this highly steric hindered system shows an interesting acidolytic cleavage of the C-terminal amide. In this regard, we studied the structure-acid lability relationship of the C-terminal amide bond (cyclohexylamide) of N-alkylated α,α-dialkylglycine amides 1a–n in acidic media and, afterward, it was established that the most important structural features related to its cleavage. Then, it was demonstrated that electron-donating effects in the aromatic amines, flexible acyl chains (Gly) at the N-terminal and the introduction of cyclic compounds into dipeptide scaffolds, increased the rate of acidolysis. All these effects are related to the ease with which the oxazolonium ion intermediate forms and they promote the proximity of the central carbonyl group to the C-terminal amide, resulting in C-terminal amide cleavage. Consequently, these findings could be applied for the design of new protecting groups, handles for solid-phase synthesis, and linkers for conjugation, due to its easily modulable and the fact that it allows to fine tune its acid-lability. 相似文献
17.
Petros Giastas Athanasios Papakyriakou George Tsafaras Socrates J. Tzartos Marios Zouridakis 《Molecules (Basel, Switzerland)》2022,27(14)
The β3 subunit of nicotinic acetylcholine receptors (nAChRs) participates in heteropentameric assemblies with some α and other β neuronal subunits forming a plethora of various subtypes, differing in their electrophysiological and pharmacological properties. While β3 has for several years been considered an accessory subunit without direct participation in the formation of functional binding sites, recent electrophysiology data have disputed this notion and indicated the presence of a functional (+) side on the extracellular domain (ECD) of β3. In this study, we present the 2.4 Å resolution crystal structure of the monomeric β3 ECD, which revealed rather distinctive loop C features as compared to those of α nAChR subunits, leading to intramolecular stereochemical hindrance of the binding site cavity. Vigorous molecular dynamics simulations in the context of full length pentameric β3-containing nAChRs, while not excluding the possibility of a β3 (+) binding site, demonstrate that this site cannot efficiently accommodate the agonist nicotine. From the structural perspective, our results endorse the accessory rather than functional role of the β3 nAChR subunit, in accordance with earlier functional studies on β3-containing nAChRs. 相似文献
18.
Dahae Lee Yuri Ko Changhyun Pang Yoon-Joo Ko You-Kyoung Choi Ki Hyun Kim Ki Sung Kang 《Molecules (Basel, Switzerland)》2022,27(1)
Armillariella tabescens (Scop.) Sing., a mushroom of the family Tricholomataceae, has been used in traditional oriental medicine to treat cholecystitis, improve bile secretion, and regulate bile-duct pressure. The present study evaluated the estrogen-like effects of A. tabescens using a cell-proliferation assay in an estrogen-receptor-positive breast cancer cell line (MCF-7). We found that the methanol extract of A. tabescens fruiting bodies promoted cell proliferation in MCF-7 cells. Using bioassay-guided fractionation of the methanol extract and chemical investigation, we isolated and identified four steroids and four fatty acids from the active fraction. All eight compounds were evaluated by E-screen assay for their estrogen-like effects in MCF-7 cells. Among the tested isolates, only (3β,5α,22E)-ergost-22-en-3-ol promoted cell proliferation in MCF-7 cells; this effect was mitigated by the ER antagonist, ICI 182,780. The mechanism underlying the estrogen-like effect of (3β,5α,22E)-ergost-22-en-3-ol was evaluated using Western blot analysis to detect the expression of extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), Akt, and estrogen receptor α (ERα). We found that (3β,5α,22E)-ergost-22-en-3-ol induced an increase in phosphorylation of ERK, PI3K, Akt, and ERα. Together, these experimental results suggest that (3β,5α,22E)-ergost-22-en-3-ol is responsible for the estrogen-like effects of A. tabescens and may potentially aid control of estrogenic activity in menopause. 相似文献
19.
Daniil Zhukovsky Dmitry Darin Olga Bakulina Mikhail Krasavin 《Molecules (Basel, Switzerland)》2022,27(6)
The reactivity of cyclic α-diazo monocarbonyl compounds differs from that of their acyclic counterparts. In this review, we summarize the current literature available on the synthesis and synthetic applications of three major classes of cyclic α-diazo monocarbonyl compounds: α-diazo ketones, α-diazo lactones and α-diazo lactams. 相似文献
20.
Juan Cardozo-Muoz Luis E. Cuca-Surez Juliet A. Prieto-Rodríguez Fabian Lopez-Vallejo Oscar J. Patio-Ladino 《Molecules (Basel, Switzerland)》2022,27(10)
Digestive enzymes such α-amylase (AA), α-glucosidase (AG) and pancreatic lipase (PL), play an important role in the metabolism of carbohydrates and lipids, being attractive therapeutic targets for the treatment of type 2 diabetes and obesity. Garcinia mangostana is an interesting species because there have been identified xanthones with the potential to inhibit these enzymes. In this study, the multitarget inhibitory potential of xanthones from G. mangostana against AA, AG and PL was assessed. The methodology included the isolation and identification of bioactive xanthones, the synthesis of some derivatives and a molecular docking study. The chemical study allowed the isolation of five xanthones (1–5). Six derivatives (6–11) were synthesized from the major compound, highlighting the proposal of a new solvent-free methodology with microwave irradiation for obtaining aromatic compounds with tetrahydropyran cycle. Compounds with multitarget activity correspond to 2, 4, 5, 6 and 9, highlighting 6 with IC50 values of 33.3 µM on AA, 69.2 µM on AG and 164.4 µM on PL. Enzymatic kinetics and molecular docking studies showed that the bioactive xanthones are mainly competitive inhibitors on AA, mixed inhibitors on AG and non-competitive inhibitors on PL. The molecular coupling study established that the presence of methoxy, hydroxyl and carbonyl groups are important in the activity and interaction of polyfunctional xanthones, highlighting their importance depending on the mode of inhibition. 相似文献