首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Salinity is one of the major abiotic stresses limiting crop growth and productivity worldwide. Salt stress during germination degenerates crop establishment and declines yield in wheat, therefore alleviating the damage of salt stress to wheat seedlings is crucial. Chitooligosaccharide (COS) was grafted with γ-aminobutyric acid based on the idea of bioactive molecular splicing, and the differences in salt resistance before and after grafting were compared. The expected derivative was successfully synthesized and exhibited better salt resistance-inducing activity than the raw materials. By activating antioxidant enzymes such as superoxide dismutases (SOD), catalase (CAT) and phenylalanine ammonia-lyase (PAL) and subsequently eliminating reactive oxygen species (ROS) in a timely manner, the rate of O2 production and H2O2 content of wheat seedlings were reduced, and the dynamic balance of free radical metabolism in the plant body was maintained. A significantly reduced MDA content, reduced relative permeability of the cell membrane, and decreased degree of damage to the cell membrane were observed. A significant increase in the content of soluble sugar, maintenance of osmotic regulation and the stability of the cell membrane structure, effective reduction in the salt stress-induced damage to wheat, and the induction of wheat seedling growth were also observed, thereby improving the salt tolerance of wheat seedlings.  相似文献   

2.
Oxytropis pseudoglandulosa plant is used in traditional Mongolian medicine. However, its chemical composition and biological properties are poorly explored. In this study, the total content of polyphenols and flavonoids as well as antioxidant activity were verified in plant extract. The total phenolic and flavonoid contents were determined by spectrometric (6.62 mg GAE/g and 10.32 mg QE/g) and chromatographic (17,598 mg/kg and 17,467 mg/kg) assays. The antioxidant potential was investigated by DPPH assay and yielded IC50 at 18.76 µg/mL. Twelve phenolic compounds were identified as components of O. pseudoglandulosa extract. Kaempferol-3-O-robinosyl-7-O-rhamnoside and kaempferol-3-(p-coumaroyl)-rutinosyl-7-rhamnoside made up 80% of determined components and were found to be the major polyphenolic compounds. The biological properties of O. pseudoglandulosa extracts were determined in vitro using human epithelial adenocarcinoma Caco-2 cell line. Low concentrations of extract (0–30 µg/mL) exhibited protective effects against cell damage caused by chemically induced oxidative stress. Elevated concentrations, on the other hand, resulted in apoptotic-type cell death induction. Metabolic failure, ROS elevation and membrane permeabilization observed in cells upon incubation with extract dosages above 50 µg/mL allowed us to conclude on O. pseudoglandulosa being predominantly a necrosis inducer.  相似文献   

3.
Agriculture is the backbone of every developing country. Among various crops, wheat (Triticum aestivum L.) belongs to the family Poaceae and is the most important staple food crop of various countries. Different biotic (viruses, bacteria and fungi) and abiotic stresses (water logging, drought and salinity) adversely affect the qualitative and quantitative attributes of wheat. Among these stresses, salinity stress is a very important limiting factor affecting the morphological, physiological, biochemical attributes and grain yield of wheat. This research work was carried out to evaluate the influence of phytosynthesized TiO2 NPs on the germination, physiochemical, and yield attributes of wheat varieties in response to salinity. TiO2 NPs were synthesized using TiO2 salt and a Buddleja asiatica plant extract as a reducing and capping agent. Various concentrations of TiO2 nanoparticles (20, 40, 60 and 80 mg/L) and salt solutions (NaCl) (100 and 150 mM) were used. A total of 20 mg/L and 40 mg/L improve germination attributes, osmotic and water potential, carotenoid, total phenolic, and flavonoid content, soluble sugar and proteins, proline and amino acid content, superoxide dismutase activity, and reduce malondialdhehyde (MDA) content at both levels of salinity. These two concentrations also improved the yield attributes of wheat varieties at both salinity levels. The best results were observed at 40 mg/L of TiO2 NPs at both salinity levels. However, the highest concentrations (60 and 80 mg/L) of TiO2 NPs showed negative effects on germination, physiochemical and yield characteristics and causes stress in both wheat varieties under control irrigation conditions and salinity stress. Therefore, in conclusion, the findings of this research are that the foliar application of TiO2 NPs can help to improve tolerance against salinity stress in plants.  相似文献   

4.
High salt levels are one of the significant and major limiting factors on crop yield and productivity. Out of the available attempts made against high salt levels, engineered nanoparticles (NPs) have been widely employed and considered as effective strategies in this regard. Of these NPs, titanium dioxide nanoparticles (TiO2 NPs) and selenium functionalized using chitosan nanoparticles (Cs–Se NPs) were applied for a quite number of plants, but their potential roles for alleviating the adverse effects of salinity on stevia remains unclear. Stevia (Stevia rebaudiana Bertoni) is one of the reputed medicinal plants due to their diterpenoid steviol glycosides (stevioside and rebaudioside A). For this reason, the current study was designed to investigate the potential of TiO2 NPs (0, 100 and 200 mg L−1) and Cs–Se NPs (0, 10 and 20 mg L−1) to alleviate salt stress (0, 50 and 100 mM NaCl) in stevia. The findings of the study revealed that salinity decreased the growth and photosynthetic traits but resulted in substantial cell damage through increasing H2O2 and MDA content, as well as electrolyte leakage (EL). However, the application of TiO2 NPs (100 mg L−1) and Cs–Se NPs (20 mg L−1) increased the growth, photosynthetic performance and activity of antioxidant enzymes, and decreased the contents of H2O2, MDA and EL under the saline conditions. In addition to the enhanced growth and physiological performance of the plant, the essential oil content was also increased with the treatments of TiO2 (100 mg L−1) and Cs–Se NPs (20 mg L−1). In addition, the tested NPs treatments increased the concentration of stevioside (in the non-saline condition and under salinity stress) and rebaudioside A (under the salinity conditions) in stevia plants. Overall, the current findings suggest that especially 100 mg L−1 TiO2 NPs and 20 mg L−1 Cs–Se could be considered as promising agents in combating high levels of salinity in the case of stevia.  相似文献   

5.
Complexity between thiamine (vitamin B1) and VSO4.xH2O salt with the suggest formula, [VO (vitB1)2] has been synthesized by the chemical reaction in neutralization media pH = 7.5 at 70 °C. The assignments of the elemental analysis, conductivity measurements, FT‐IR, UV–Vis, ESR spectroscopy, thermal analyses (TGA‐DTA) and magnetic moment data visualize the stoichiometry, formula and chelation of the vanadyl (II) complex. The spectroscopic analyses revealed that vitamin B1 reacted with vanadyl (II) ions as a bidentate ligand via hydroxyl ethyl‐oxygen and sulfur of the thiazole group. New vanadyl (II) complex has the protective effect against pancreatic toxicity induced by STZ. The target of this investigation was to assess the enhancement effect of new vanadyl (II)complex in two doses on pancreatic toxicity, oxidative stress, DNA damage and hyperglycemia persuade by STZ. The rats were divided into 7 groups; control group, STZ (diabetic untreated group) (50 mg/kg), STZ plus thiamine (10 mg/Kg) (Low dose), STZ plus thiamine (50 mg/Kg) (High dose), STZ plus VSO4. xH2O (15 mg/kg), STZ + vanadyl (II) complex (10 mg/Kg) (Low dose), STZ+ vanadyl (II) complex (50 mg/Kg) (High dose). Vanadyl (II) complex in high dose afforded a significant decline in MDA level parallel to significant elevation in antioxidant enzymes (SOD, CAT, MPO and XO) in pancreas homogenates. It may be due to the capturing activities of reactive oxygen species by the new complex, which reduces oxidative damage and enhance antioxidant capacities. The novel complex succeeded in the restoration of lipid parameters to its normal levels beside lowering TNF‐α and CRP levels. The new complex also reduces hyperglycemia induced by STZ greatly and improve histological and ultrastructure of pancreas and has a high potency in reducing DNA damage in pancreatic tissues.  相似文献   

6.
Colombia is the main producer of cape gooseberry (Physalis peruviana L.), a plant known for its various consumption practices and medicinal properties. This plant is generally grown in eroded soils and is considered moderately tolerant to unfavorable conditions, such as nutrient-poor soils or high salt concentrations. Most studies conducted on this plant focus on fruit production and composition because it is the target product, but a small number of studies have been conducted to describe the effect of abiotic stress, e.g., salt stress, on growth and biochemical responses. In order to better understand the mechanism of inherent tolerance of this plant facing salt stress, the present study was conducted to determine the metabolic and growth differences of P. peruviana plants at three different BBCH-based growth substages, varying salt conditions. Hence, plants were independently treated with two NaCl solutions, and growth parameters and LC-ESI-MS-derived semi-quantitative levels of metabolites were then measured and compared between salt treatments per growth substage. A 90 mM NaCl treatment caused the greatest effect on plants, provoking low growth and particular metabolite variations. The treatment discrimination-driving feature classification suggested that glycosylated flavonols increased under 30 mM NaCl at 209 substages, withanolides decreased under 90 mM NaCl at 603 and 703 substages, and up-regulation of a free flavonol at all selected stages can be considered a salt stress response. Findings locate such response into a metabolic context and afford some insights into the plant response associated with antioxidant compound up-regulation.  相似文献   

7.
Bacteria that surround plant roots and exert beneficial effects on plant growth are known as plant growth-promoting rhizobacteria (PGPR). In addition to the plant growth-promotion, PGPR also imparts resistance against salinity and oxidative stress and needs to be studied. Such PGPR can function as dynamic bioinoculants under salinity conditions. The present study reports the isolation of phytase positive multifarious Klebsiella variicola SURYA6 isolated from wheat rhizosphere in Kolhapur, India. The isolate produced various plant growth-promoting (PGP), salinity ameliorating, and antioxidant traits. It produced organic acid, yielded a higher phosphorous solubilization index (9.3), maximum phytase activity (376.67 ± 2.77 U/mL), and copious amounts of siderophore (79.0%). The isolate also produced salt ameliorating traits such as indole acetic acid (78.45 ± 1.9 µg/mL), 1 aminocyclopropane-1-carboxylate deaminase (0.991 M/mg/h), and exopolysaccharides (32.2 ± 1.2 g/L). In addition to these, the isolate also produced higher activities of antioxidant enzymes like superoxide dismutase (13.86 IU/mg protein), catalase (0.053 IU/mg protein), and glutathione oxidase (22.12 µg/mg protein) at various salt levels. The isolate exhibited optimum growth and maximum secretion of these metabolites during the log-phase growth. It exhibited sensitivity to a wide range of antibiotics and did not produce hemolysis on blood agar, indicative of its non-pathogenic nature. The potential of K. variicola to produce copious amounts of various PGP, salt ameliorating, and antioxidant metabolites make it a potential bioinoculant for salinity stress management.  相似文献   

8.
A novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) method was developed for the selective determination of polyphenols (flavonoids, simple phenolic and hydroxycinnamic acids) in complex plant matrices. The method combines chromatographic separation, constituent analysis, and post-column identification of antioxidants in plant extracts. The separation of polyphenols was performed on a C18 column using gradient elution with two different mobile phase solutions, i.e., MeOH and 0.2% o-phosphoric acid. The HPLC-separated antioxidant polyphenols in the extracts react with copper(II)-neocuproine (Cu(II)-Nc) reagent in a post-column reaction coil to form a derivative. The reagent is reduced by antioxidants to the copper(I)-neocuproine (Cu(I)-Nc) chelate having maximum absorption at 450 nm. The negative peaks of antioxidant constituents were monitored by measuring the increase in absorbance due to Cu(I)-Nc. The detection limits of polyphenols at 450 nm (in the range of 0.17-3.46 μM) after post-column derivatization were comparable to those at 280 nm UV detection without derivatization. The developed method was successfully applied to the identification of antioxidant compounds in crude extracts of Camellia sinensis, Origanum marjorana and Mentha. The method is rapid, inexpensive, versatile, non-laborious, uses stable reagents, and enables the on-line qualitative and quantitative estimation of antioxidant constituents of complex plant samples.  相似文献   

9.
Correct identification of pigments and all accompanying phases found in colour layers of historical paintings are relevant for searching their origin and pigment preparation pathways and for specification of their further degradation processes. We successfully applied the analytical route combining non-destructive in situ X-ray fluorescence analyses with subsequent laboratory investigation of micro-samples by optical microscopy, scanning electron microscopy/energy-dispersive spectroscopy and X-ray powder micro-diffraction (micro-XRD) to obtain efficiently all the data relevant for mineralogical interpretations of the copper pigments origin. Cu salts (carbonates, chlorides, sulphates, etc.) used as pigments exist in a range of polymorphs with similar or identical composition. The efficiency of the micro-XRD for direct identification of such crystal phases present in micro-samples of colour layers was demonstrated in the presented paper. A new, until now unpublished, type of copper pigment—cumengeite, Pb21Cu20Cl42(OH)40—used as a blue pigment on a sacral wall painting in the Czech Republic was found by means of micro-XRD. Furthermore, azurite, malachite, paratacamite, atacamite and posnjakite were identified in fragments of colour layers of selected Gothic wall paintings. We found Cu–Zn arsenates indicating the natural origin of azurite and malachite; artificial malachite was distinguishable according to its typical spherulitic crystals. The corrosion of blue azurite to green basic Cu chloride was clearly evidenced on some places exposed to the action of salts and moisture—in a good agreement with the results of laboratory experiments, which also show that oxalic acid accelerates the corrosion of Cu pigments.  相似文献   

10.
Wheat (Triticum aestivum L.) is the oldest known food crop, and many studies have reported that wheat shoots (i.e., wheatgrass) possess anti-cancer, anti-inflammatory, and antioxidant activities. However, the potentially ameliorative effect of wheat shoots on hepatotoxicity caused by high doses of N-acetyl-para-aminophenol (acetaminophen, APAP) has yet to be reported. C57BL/6 mice received daily oral TAE (100 or 200 mg/kg), positive control (silymarin 100 mg/kg), or negative control (saline vehicle) treatments for 7 days prior to intraperitoneal APAP injection. Histological, serum (ELISA), Western blotting, and quantitative PCR analyses of excised liver tissues were then performed. Pre-treatment with TAE (100 or 200 mg/kg) ameliorated APAP-induced pathological damage (i.e., hepatotoxic lesions), reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, and also ameliorated APAP-induced increases in oxidative stress, thereby inhibiting oxidative liver damage and reducing the expression of inflammatory cytokines. In addition, TAE pre-treatment inhibited the expression of Cytochrome P4502E1 (CYP2E1), which is a key enzyme in the onset of APAP-induced hepatotoxicity, suppressed the expression of the target proteins regulated by the antioxidant enzyme Nrf2, and suppressed hepatocyte apoptosis. These findings suggest that TAE is an attractive therapeutic candidate that exhibits potential hepatoprotective activity by inhibiting oxidative stress, inflammation, apoptosis, and liver damage.  相似文献   

11.
With everyday advances in the field of pharmaceuticals, medicinal plants have high priority regarding the introduction of novel synthetic compounds by the usage of environmentally friendly extraction technologies. Herein, a supercritical CO2 extraction method was implemented in the analysis of four plants (chamomile, St. John’s wort, yarrow, and curry plant) after which the non-targeted analysis of the chemical composition, phenolic content, and antioxidant activity was evaluated. The extraction yield was the highest for the chamomile (5%), while moderate yields were obtained for the other three plants. The chemical composition analyzed by gas chromatography-high-resolution mass spectrometry (GC-HRMS) and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) demonstrated extraction of diverse compounds including terpenes and terpenoids, fatty acids, flavonoids and coumarins, functionalized phytosterols, and polyphenols. Voltammetry of microfilm immobilized on a glassy carbon electrode using square-wave voltammetry (SWV) was applied in the analysis of extracts. It was found that antioxidant activity obtained by SWV correlates well to 1,1-diphenyl-2-picrylhidrazine (DPPH) radical assay (R2 = 0.818) and ferric reducing antioxidant power (FRAP) assay (R2 = 0.640), but not to the total phenolic content (R2 = 0.092). Effective results were obtained in terms of activity showing the potential usage of supercritical CO2 extraction to acquire bioactive compounds of interest.  相似文献   

12.
In this study, we evaluated bioinspired titanium dioxide nanoparticles (TiO2 NPs) that elicited biochemical and proteome modifications in wheat plants under the biotic stress caused by Puccinia striiformis f. sp. tritici (Pst). Biosynthesis of TiO2 NPs was confirmed using UV–Vis spectrophotometry, energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. We found that the nanoparticles with crystalline nature were smaller than 100 nm. The results of FTIR analysis showed the presence of potential functional groups exhibiting O-H, N-H, C-C, and Ti-O stretching. The TiO2 NPs of different concentrations (20, 40, 60, and 80 mg L−1) were exogenously applied to wheat plants under the biotic stress caused by Pst, which is responsible for yellow stripe rust disease. The results of the assessment of disease incidence and percent disease index displayed time- and dose-dependent responses. The 40 mg L−1 TiO2 NPs were the most effective in decreasing disease severity. The bioinspired TiO2 NPs were also evaluated for enzymatic (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), and nonenzymatic metabolites (total proline, phenolic, and flavonoid contents) in wheat plants under stripe rust stress. The 40 mg L−1 TiO2 NPs were effective in eliciting biochemical modifications to reduce biotic stress. We further evaluated the effects of TiO2 NPs through gel- and label-free liquid chromatography-mass spectrometry (LC-MS) proteome analysis. We performed proteome analysis of infected wheat leaves and leaves treated with 40 mg L−1 TiO2 NPs under stripe rust stress. The functional classification of the proteins showed downregulation of proteins related to protein and carbohydrate metabolism, as well as of photosynthesis in plants under biotic stress. An upregulation of stress-related proteins was observed, including the defense mechanisms and primary metabolic pathways in plants treated with 40 mg L−1 TiO2 NPs under stress. The experimental results showed the potential of applying biogenic TiO2 NPs to combat fungal diseases of wheat plants and provided insight into the protein expression of plants in response to biotic stress.  相似文献   

13.
Local tribes use the leaves of Ficus lepicarpa B. (Moraceae), a traditional Malaysian medicine, as a vegetable dish, a tonic, and to treat ailments including fever, jaundice and ringworm. The purpose of this study was to look into the possible therapeutic effects of F. lepicarpa leaf extract against carbon tetrachloride (CCl4)-induced liver damage in rats. The DPPH test was used to measure the antioxidant activity of plants. Gas chromatography-mass spectrometry was used for the phytochemical analysis (GCMS). Six groups of male Sprague-Dawley rats were subjected to the following treatment regimens: control group, CCl4 alone, F. lepicarpa 400 mg/kg alone, CCl4 + F. lepicarpa 100 mg/kg, CCl4 + F. lepicarpa 200 mg/kg and CCl4 + F. lepicarpa 400 mg/kg. The rats were euthanized after two weeks, and biomarkers of liver function and antioxidant enzyme status were assessed. To assess the extent of liver damage and fibrosis, histopathological and immunohistochemical examinations of liver tissue were undertaken. The total phenolic content and the total flavonoid content in methanol extract of F. lepicarpa leaves were 58.86 ± 0.04 mg GAE/g and 44.31 ± 0.10 mg CAE/g, respectively. F. lepicarpa’s inhibitory concentration (IC50) for free radical scavenging activity was reported to be 3.73 mg/mL. In a dose-related manner, F. lepicarpa was effective in preventing an increase in serum ALT, serum AST and liver MDA. Histopathological alterations revealed that F. lepicarpa protects against the oxidative stress caused by CCl4. The immunohistochemistry results showed that proinflammatory cytokines (tumour necrosis factor-α, interleukin-6, prostaglandin E2) were suppressed. The antioxidative, anti-inflammatory, and free-radical scavenging activities of F. lepicarpa can be related to its hepatoprotective benefits.  相似文献   

14.
The objective of this study was to determine the oxidative stress and the physiological and antioxidant responses of coriander plants (Coriandrum sativum) grown for 58 days in soil with zinc oxide nanoparticles (ZnO NPs) and zinc sulfate (ZnSO4) at concentrations of 0, 100, 200, 300, and 400 mg of Zn/kg of soil. The results revealed that all Zn compounds increased the total chlorophyll content (CHLt) by at least 45%, compared to the control group; however, with 400 mg/kg of ZnSO4, chlorophyll accumulation decreased by 34.6%. Zn determination by induction-plasma-coupled atomic emission spectrometry (ICP–AES) showed that Zn absorption in roots and shoots occurred in plants exposed to ZnSO4 at all concentrations, which resulted in high levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Only at 400 mg/kg of ZnSO4, a 78.6% decrease in the MDA levels was observed. According to the results, the ZnSO4 treatments were more effective than the ZnO NPs to increase the antioxidant activity of catalase (CAT), ascorbate peroxidase (APX), and peroxidases (POD). The results corroborate that phytotoxicity was higher in plants subjected to ZnSO4 compared to treatments with ZnO NPs, which suggests that the toxicity was due to Zn accumulation in the tissues by absorbing dissolved Zn++ ions.  相似文献   

15.
Polyphenols from ethyl acetate extracts from the leaves, stems and roots of Korean Humulus japonicus were comprehensively profiled using liquid chromatography–electrospray ionization–tandem mass spectrometry. A total of 36 polyphenols were detected, of which 26 were structurally characterized based on their [M − H] peak, tandem mass spectrometry fragmentation pattern, UV–vis absorption and published data. Validation data provided satisfactory results for the evaluated parameters. The determination coefficients were ≥0.9812. The limits of detection and quantification were 0.017–0.573 and 0.056–1.834 mg/L, respectively, indicating good performance limits. The accuracy (expressed as percentage recovery) at 50 and 100 mg/L was 71.4–99.7 and 75.1–105.1%, with precisions (expressed as relative standard deviation) of 1.5–7.3 and 0.8–4.1%, respectively, indicating acceptable accuracy and precision values. The leaves were rich in total polyphenols (3089.9 ± 6.4 mg/kg of fresh sample) followed by the stems (1313.9 ± 6.4 mg/kg of fresh sample) and roots (655.2 ± 2.7 mg/kg of fresh sample). Antioxidant activity, determined by α,α‐diphenyl‐β‐picrylhydrazyl, 2,2′‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) scavenging activity and ferric reducing antioxidant power assay, revealed the lowest EC50 value for the leaf extracts, indicating a higher scavenging activity in this tissue followed by the roots and stems. Overall, the results indicated that H. japonicus is rich in polyphenols and could be a potential alternative to Humulus lupulus (hop plant) in the brewery industry.  相似文献   

16.
The present study was designed to examine the chemical composition of the essential oil, in vitro antioxidant activity and total phenolic and flavonoid content of extracts from plant parts (leaf, flower and stem) of Teucrium alyssifolium. The principle components of the essential oil were trans-β-caryophyllene (16.87%), ar-curcumene (11.43%) and bisabolene (11.06%), representing 39.36% of the oil. The total phenolic contents ranged between 13.99 and 41.54 mg of GAE/g of extract. The concentrations of flavonoids varied from 16.82 to 49.52 mg of Ru/g of extract. Antioxidant activity was determined in vitro using DPPH reagent and expressed as concentration of each extract required to inhibit radical by 50% (IC50) values that ranged from 13.52 to 132.55 μg/ml. Our results have indicated that water extract of T. alyssifolium (part leaf) with a total content of polyphenols (41.54 mg of GAE/g) and an IC50 of 13.52 μg/ml is more antioxidant.  相似文献   

17.
Coffea arabica pulp (CP) is a by-product of coffee processing. CP contains polyphenols that have exhibited beneficial effects, including antioxidant and lipid-lowering effects, as well as enhanced insulin sensitivity, in in vitro and in vivo models. How polyphenols, as found in CP aqueous extract (CPE), affect type 2 diabetes (T2D) has not been investigated. Thus, the present study examined the potential antidiabetic, antioxidant, and renoprotective effects of CPE-rich polyphenols, using an experimental model of T2D in rats induced by a high-fat diet and a single low dose of streptozotocin. The T2D rats received either 1000 mg/kg body weight (BW) of CPE, 30 mg/kg BW of metformin (Met), or a combination treatment (CPE + Met) for 3 months. Plasma parameters, kidney morphology and function, and renal organic transport were determined. Significant hyperglycemia, hypertriglyceridemia, insulin resistance, increased renal lipid content and lipid peroxidation, and morphological kidney changes related to T2D were restored by both CPE and CPE + Met treatments. Additionally, the renal uptake of organic cation, 3H-1-methyl-4-phenylpyridinium (MPP+), was reduced in T2D, while transport was restored by CPE and CPE + Met, through an up-regulation of antioxidant genes and protein kinase Cα deactivation. Thus, CPE has antidiabetic and antioxidant effects that potentially ameliorate kidney function in T2D by preserving renal organic cation transport through an oxidative stress pathway.  相似文献   

18.
Bamboo is a widely distributed graminaceous plant in China and is a potential source of bioactive substances. Incidentally, bamboo’s fruit is rich in phytochemicals such as polyphenols and flavonoids, which are significant to human health. In this study, we identified the phenolic compounds of the fruit and investigated the antioxidant activities of Cephalostachyum fuchsianum Gamble (CFG) fruit polyphenols with in vitro and in vivo tests for the first time. UPLC–Q–TOF–MS/MS analysis results showed that the fruit contained 43 phenolic compounds, including 7 hydroxybenzoic acids, 12 flavonoids, 7 coumarins, 10 hydroxycinnamic acids, 1 terpenoid, and 5 lignans. The TPC of SP extracts was higher than that of IBPs extracts in FP and FF. The SP extracts in FP showed better antioxidant activities in vitro compared to those in FF. In addition, polyphenols from CFG fruits protected against H2O2-induced oxidative damage in HepG2 cells, and the protective effect of polyphenols in FP was superior to that in FF. The analysis results showed that CFG fruit has great potential in exploiting natural chemical substances, which can provide valuable pieces of information for the further development and utilization of CFG.  相似文献   

19.
Chemists of the late 19th century, including Alfred Werner, prepared salts containing either green or violet cations of composition [CoCl2(en)2]+ (en is ethylenediamine, C2H8N2); we now refer to these as trans‐dichloro and cis‐dichloro species. We have discovered a third salt, purple in color, containing cations of the same elemental composition and whose asymmetric unit composition is [CoCl2(en)2]2Cl2·3H2O, in which the cobalt cations are a cis:trans dichloro pair. Such a discovery would undermine Werner's argument that if only two forms can be prepared, his octahedral theory was proven. Probably because his students never examined their crystals under a microscope, they failed to observe the `third' species, thereby ruining Werner's argument since he relied strictly on color to identify them. That was fortunate since our purple salt would have led him to abandon, or certainly delay, his momentous discovery. Our crystals consist of a 1:1 mixture of the cis and trans cations, thereby sharing the same elemental analysis and conductivity as the single salts, but not their crystal structure, inasmuch as X‐ray diffraction had not even been discovered then. Serendipitously, our discovery would have been a great boon to his theoretical acumen, while his `two‐color' argument may have doomed him.  相似文献   

20.
A simple enantioselective HPLC method was developed for measuring carfentrazone‐ethyl enantiomers. The separation and determination was accomplished on an amylose tris[(S)‐α‐methylbenzylcarbamate] (Chiralpak AS) column using n‐hexane/ethanol (98:2, v/v) as mobile phase at a flow rate of 1.0 mL/min with UV detection at 248 nm. The effects of mobile‐phase composition and column temperature on the enantioseparation were discussed. The accuracy, precision, linearity, LODs, and LOQ of the method were also investigated. LOD was 0.001 mg/kg in water, 0.015 mg/kg in soil and wheat, with an LOQ of 0.0025 mg/kg in water and 0.05 mg/kg in soil and wheat for each enantiomer of carfentrazone‐ethyl. SPE was used for the enrichment and cleanup of soil, water, and wheat samples. Recoveries for two enantiomers were 88.4–106.7% with RSDr of 4.2–9.8% at 0.1, 0.5, and 1 mg/kg levels from soil, 85.8–99.5% with the RSDr of 4.4?9.6% at 0.005, 0.025, and 0.05 mg/kg levels from water, and from wheat the recoveries were 86.3?91.3% with RSDr below 5.0% at 0.2, 0.5, and 1 mg/kg levels. This method could be used to identify and quantify the carfentrazone‐ethyl enantiomers in food and environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号