共查询到20条相似文献,搜索用时 32 毫秒
1.
Asaad A. Abduljawad Mohammed Ahmed Elawad Modawy Elnour Modawy Elkhalifa Alshebli Ahmed Alashary Adam Eisa Hamdoon Liga Hasan Mohammed Salim Muhammad Ashraf Muhammad Ayaz Syed Shams ul Hassan Simona Bungau 《Molecules (Basel, Switzerland)》2022,27(20)
Saponins are triterpenoid or steroidal glycosides and are an important group of naturally occurring compounds of plant origin. They exhibit diverse pharmacological potentials including radical scavenging, as well as neuroprotective, anti-diabetic and anti-inflammatory activities, owing to their diverse chemical scaffolds. Saponins consist of an aglycone part (non-sugar) and a glycone part (sugar) and have at least one glycosidic (C–O sugar bond) linkage present between the glycone and aglycone mostly at C-3. On the basis of the aglycone part, saponins are classified into triterpenoid glycosides, steroid glycosides and alkaloid glycosides. Saponins exhibit neuroprotective activities against various disorders of the central nervous system (CNS) including stroke, Alzheimer’s disease (AD), Huntington’s disease (HD) and Parkinson’s disease (PD). They mediate their therapeutic effects by modulation of various pathological targets. This study highlights various neuroprotective mechanisms of saponins including free radical scavenging, modulation of neuroprotective signaling pathways, activation of neurotrophic factors, modulation of neurotransmitters, inhibition of BACE1 enzyme and tau hyper-phosphorylation. The study concludes that saponins have considerable efficacy against various pathological targets of neurological disorders, especially AD, and might be an important source of leads against neurodegenerative disorders. 相似文献
2.
Neurodegenerative diseases, such as Alzheimer′s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), currently represent major unmet medical needs. Therefore, novel therapeutic strategies are needed in order to improve patients’ quality of life and prognosis. Since oxidative stress can be strongly involved in neurodegenerative diseases, the potential use of inosine, known for its antioxidant properties, in this context deserves particular attention. The protective action of inosine treatment could be mediated by its metabolite urate. Here, we review the current preclinical and clinical studies investigating the use of inosine in AD, PD, ALS, and MS. The most important properties of inosine seem to be its antioxidant action and its ability to raise urate levels and to increase energetic resources by improving ATP availability. Inosine appears to be generally safe and well tolerated; however, the possible formation of kidney stones should be monitored, and data on its effectiveness should be further explored since, so far, they have been controversial. Overall, inosine could be a promising potential strategy in the management of neurodegenerative diseases, and additional studies are needed in order to further investigate its safety and efficacy and its use as a complementary therapy along with other approved drugs. 相似文献
3.
Varsha Nandwana Nitesh K. Nandwana Yogarupa Das Mariko Saito Tanisha Panda Sasmita Das Frankis Almaguel Narayan S. Hosmane Bhaskar C. Das 《Molecules (Basel, Switzerland)》2022,27(11)
Hundreds of billions of commensal microorganisms live in and on our bodies, most of which colonize the gut shortly after birth and stay there for the rest of our lives. In animal models, bidirectional communications between the central nervous system and gut microbiota (Gut–Brain Axis) have been extensively studied, and it is clear that changes in microbiota composition play a vital role in the pathogenesis of various neurodevelopmental and neurodegenerative disorders, such as Autism Spectrum Disorder, Alzheimer’s disease, Parkinson’s disease, Multiple Sclerosis, Amyotrophic Lateral Sclerosis, anxiety, stress, and so on. The makeup of the microbiome is impacted by a variety of factors, such as genetics, health status, method of delivery, environment, nutrition, and exercise, and the present understanding of the role of gut microbiota and its metabolites in the preservation of brain functioning and the development of the aforementioned neurological illnesses is summarized in this review article. Furthermore, we discuss current breakthroughs in the use of probiotics, prebiotics, and synbiotics to address neurological illnesses. Moreover, we also discussed the role of boron-based diet in memory, boron and microbiome relation, boron as anti-inflammatory agents, and boron in neurodegenerative diseases. In addition, in the coming years, boron reagents will play a significant role to improve dysbiosis and will open new areas for researchers. 相似文献
4.
Haruki Koike Yohei Iguchi Kentaro Sahashi Masahisa Katsuno 《Molecules (Basel, Switzerland)》2021,26(16)
Amyloidosis is a term referring to a group of various protein-misfolding diseases wherein normally soluble proteins form aggregates as insoluble amyloid fibrils. How, or whether, amyloid fibrils contribute to tissue damage in amyloidosis has been the topic of debate. In vitro studies have demonstrated the appearance of small globular oligomeric species during the incubation of amyloid beta peptide (Aβ). Nerve biopsy specimens from patients with systemic amyloidosis have suggested that globular structures similar to Aβ oligomers were generated from amorphous electron-dense materials and later developed into mature amyloid fibrils. Schwann cells adjacent to amyloid fibrils become atrophic and degenerative, suggesting that the direct tissue damage induced by amyloid fibrils plays an important role in systemic amyloidosis. In contrast, there is increasing evidence that oligomers, rather than amyloid fibrils, are responsible for cell death in neurodegenerative diseases, particularly Alzheimer’s disease. Disease-modifying therapies based on the pathophysiology of amyloidosis have now become available. Aducanumab, a human monoclonal antibody against the aggregated form of Aβ, was recently approved for Alzheimer’s disease, and other monoclonal antibodies, including gantenerumab, solanezumab, and lecanemab, could also be up for approval. As many other agents for amyloidosis will be developed in the future, studies to develop sensitive clinical scales for identifying improvement and markers that can act as surrogates for clinical scales should be conducted. 相似文献
5.
Oluwafemi Adeleke Ojo Adebola Busola Ojo Charles Okolie Mary-Ann Chinyere Nwakama Matthew Iyobhebhe Ikponmwosa Owen Evbuomwan Charles Obiora Nwonuma Rotdelmwa Filibus Maimako Abayomi Emmanuel Adegboyega Odunayo Anthonia Taiwo Khalaf F. Alsharif Gaber El-Saber Batiha 《Molecules (Basel, Switzerland)》2021,26(7)
Neurodegenerative diseases, for example Alzheimer’s, are perceived as driven by hereditary, cellular, and multifaceted biochemical actions. Numerous plant products, for example flavonoids, are documented in studies for having the ability to pass the blood-brain barrier and moderate the development of such illnesses. Computer-aided drug design (CADD) has achieved importance in the drug discovery world; innovative developments in the aspects of structure identification and characterization, bio-computational science, and molecular biology have added to the preparation of new medications towards these ailments. In this study we evaluated nine flavonoid compounds identified from three medicinal plants, namely T. diversifolia, B. sapida, and I. gabonensis for their inhibitory role on acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and monoamine oxidase (MAO) activity, using pharmacophore modeling, auto-QSAR prediction, and molecular studies, in comparison with standard drugs. The results indicated that the pharmacophore models produced from structures of AChE, BChE and MAO could identify the active compounds, with a recuperation rate of the actives found near 100% in the complete ranked decoy database. Moreso, the robustness of the virtual screening method was accessed by well-established methods including enrichment factor (EF), receiver operating characteristic curve (ROC), Boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC), and area under accumulation curve (AUAC). Most notably, the compounds’ pIC50 values were predicted by a machine learning-based model generated by the AutoQSAR algorithm. The generated model was validated to affirm its predictive model. The best models achieved for AChE, BChE and MAO were models kpls_radial_17 (R2 = 0.86 and Q2 = 0.73), pls_38 (R2 = 0.77 and Q2 = 0.72), kpls_desc_44 (R2 = 0.81 and Q2 = 0.81) and these externally validated models were utilized to predict the bioactivities of the lead compounds. The binding affinity results of the ligands against the three selected targets revealed that luteolin displayed the highest affinity score of −9.60 kcal/mol, closely followed by apigenin and ellagic acid with docking scores of −9.60 and −9.53 kcal/mol, respectively. The least binding affinity was attained by gallic acid (−6.30 kcal/mol). The docking scores of our standards were −10.40 and −7.93 kcal/mol for donepezil and galanthamine, respectively. The toxicity prediction revealed that none of the flavonoids presented toxicity and they all had good absorption parameters for the analyzed targets. Hence, these compounds can be considered as likely leads for drug improvement against the same. 相似文献
6.
Saad Bakrim Sara Aboulaghras Naoual El Menyiy Nasreddine El Omari Hamza Assaggaf Learn-Han Lee Domenico Montesano Monica Gallo Gokhan Zengin Yusra AlDhaheri Abdelhakim Bouyahya 《Molecules (Basel, Switzerland)》2022,27(24)
Alzheimer’s disease remains one of the most widespread neurodegenerative reasons for dementia worldwide and is associated with considerable mortality and morbidity. Therefore, it has been considered a priority for research. Indeed, several risk factors are involved in the complexity of the therapeutic ways of this pathology, including age, traumatic brain injury, genetics, exposure to aluminum, infections, diabetes, vascular diseases, hypertension, dyslipidemia, and obesity. The pathophysiology of Alzheimer’s disease is mostly associated with hyperphosphorylated protein in the neuronal cytoplasm and extracellular plaques of the insoluble β-amyloid peptide. Therefore, the management of this pathology needs the screening of drugs targeting different pathological levels, such as acetylcholinesterase (AchE), amyloid β formation, and lipoxygenase inhibitors. Among the pharmacological strategies used for the management of Alzheimer’s disease, natural drugs are considered a promising therapeutic strategy. Indeed, bioactive compounds isolated from different natural sources exhibit important anti-Alzheimer effects by their effectiveness in promoting neuroplasticity and protecting against neurodegeneration as well as neuroinflammation and oxidative stress in the brain. These effects involve different sub-cellular, cellular, and/or molecular mechanisms, such as the inhibition of acetylcholinesterase (AchE), the modulation of signaling pathways, and the inhibition of oxidative stress. Moreover, some nanoparticles were recently used as phytochemical delivery systems to improve the effects of phytochemical compounds against Alzheimer’s disease. Therefore, the present work aims to provide a comprehensive overview of the key advances concerning nano-drug delivery applications of phytochemicals for Alzheimer’s disease management. 相似文献
7.
Narayan D. Chaurasiya Francisco Leon Ilias Muhammad Babu L. Tekwani 《Molecules (Basel, Switzerland)》2022,27(13)
Monoamine oxidase inhibitors (MAOIs) are an important class of drugs prescribed for treatment of depression and other neurological disorders. Evidence has suggested that patients with atypical depression preferentially respond to natural product MAOIs. This review presents a comprehensive survey of the natural products, predominantly from plant sources, as potential new MAOI drug leads. The psychoactive properties of several traditionally used plants and herbal formulations were attributed to their MAOI constituents. MAO inhibitory constituents may also be responsible for neuroprotective effects of natural products. Different classes of MAOIs were identified from the natural product sources with non-selective as well as selective inhibition of MAO-A and -B. Selective reversible natural product MAOIs may be safer alternatives to the conventional MAOI drugs. Characterization of MAO inhibitory constituents of natural products traditionally used as psychoactive preparations or for treatment of neurological disorders may help in understanding the mechanism of action, optimization of these preparations for desired bioactive properties, and improvement of the therapeutic potential. Potential therapeutic application of natural product MAOIs for treatment of neuroblastoma is also discussed. 相似文献
8.
Tarek Benameur Giulia Giacomucci Maria Antonietta Panaro Melania Ruggiero Teresa Trotta Vincenzo Monda Ilaria Pizzolorusso Dario Domenico Lofrumento Chiara Porro Giovanni Messina 《Molecules (Basel, Switzerland)》2022,27(1)
Curcumin, the dietary polyphenol isolated from Curcuma longa (turmeric), is commonly used as an herb and spice worldwide. Because of its bio-pharmacological effects curcumin is also called “spice of life”, in fact it is recognized that curcumin possesses important proprieties such as anti-oxidant, anti-inflammatory, anti-microbial, antiproliferative, anti-tumoral, and anti-aging. Neurodegenerative diseases such as Alzheimer’s Diseases, Parkinson’s Diseases, and Multiple Sclerosis are a group of diseases characterized by a progressive loss of brain structure and function due to neuronal death; at present there is no effective treatment to cure these diseases. The protective effect of curcumin against some neurodegenerative diseases has been proven by in vivo and in vitro studies. The current review highlights the latest findings on the neuroprotective effects of curcumin, its bioavailability, its mechanism of action and its possible application for the prevention or treatment of neurodegenerative disorders. 相似文献
9.
Christopher R. Apostol Parthasaradhireddy Tanguturi Lajos Z. Szab Daniel Varela Thiago Gilmartin John M. Streicher Robin Polt 《Molecules (Basel, Switzerland)》2021,26(16)
The search for efficacious treatment of neurodegenerative and progressive neuroinflammatory diseases continues, as current therapies are unable to halt or reverse disease progression. PACAP represents one potential therapeutic that provides neuroprotection effects on neurons, and also modulates inflammatory responses and circulation within the brain. However, PACAP is a relatively long peptide hormone that is not trivial to synthesize. Based on previous observations that the shortened isoform PACAP1–23 is capable of inducing neuroprotection in vitro, we were inspired to synthesize shortened glycopeptide analogues of PACAP1–23. Herein, we report the synthesis and in vitro characterization of glycosylated PACAP1–23 analogues that interact strongly with the PAC1 and VPAC1 receptors, while showing reduced activity at the VPAC2 receptor. 相似文献
10.
F. Sezer Senol Deniz Gokcen Eren Ilkay Erdogan Orhan Bilge Sener Ufuk Ozgen Randa Aldaba Ihsan Calis 《Molecules (Basel, Switzerland)》2021,26(7)
Cholinesterase (ChE) inhibition is an important treatment strategy for Alzheimer’s disease (AD) as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are involved in the pathology of AD. In the current work, ChE inhibitory potential of twenty-four natural products from different chemical classes (i.e., diosgenin, hecogenin, rockogenin, smilagenin, tigogenin, astrasieversianins II and X, astragalosides I, IV, and VI, cyclocanthosides E and G, macrophyllosaponins A-D, kokusaginin, lamiide, forsythoside B, verbascoside, alyssonoside, ipolamide, methyl rosmarinate, and luteolin-7-O-glucuronide) was examined using ELISA microtiter assay. Among them, only smilagenin and kokusaginine displayed inhibitory action against AChE (IC50 = 43.29 ± 1.38 and 70.24 ± 2.87 µg/mL, respectively). BChE was inhibited by only methyl rosmarinate and kokusaginine (IC50 = 41.46 ± 2.83 and 61.40 ± 3.67 µg/mL, respectively). IC50 values for galantamine as the reference drug were 1.33 ± 0.11 µg/mL for AChE and 52.31 ± 3.04 µg/mL for BChE. Molecular docking experiments showed that the orientation of smilagenin and kokusaginine was mainly driven by the interactions with the peripheral anionic site (PAS) comprising residues of hAChE, while kokusaginine and methyl rosmarinate were able to access deeper into the active gorge in hBChE. Our data indicate that similagenin, kokusaginine, and methyl rosmarinate could be hit compounds for designing novel anti-Alzheimer agents. 相似文献
11.
Mengdie Gong Mingyan Tu Hongxia Sun Lu Li Lili Zhu Honglin Li Zhenjiang Zhao Shiliang Li 《Molecules (Basel, Switzerland)》2022,27(1)
Huntington’s disease (HD) is a rare single-gene neurodegenerative disease, which can only be treated symptomatically. Currently, there are no approved drugs for HD on the market. Studies have found that MAPK11 can serve as a potential therapeutic target for HD. Regrettably, no MAPK11 small molecule inhibitors have been approved at present. This paper presents three series of compounds that were designed and synthesized based on the structure of skepinone-L, a known MAPK14 inhibitor. Among the synthesized compounds, 13a and 13b, with IC50 values of 6.40 nM and 4.20 nM, respectively, displayed the best inhibitory activities against MAPK11. Furthermore, the structure–activity relationship (SAR) is discussed in detail, which is constructive in optimizing the MAPK11 inhibitors for better activity and effect against HD. 相似文献
12.
Jana Maíkov Abdullah Al Mamun Latifah Al Shammari Jan Korbe
ný Tom Ku
era Daniela Hulcov Jií Kune Milan Malaník Michaela Vakov Elika Kohelov Lucie Novkov Lucie Cahlíkov Milan Pour 《Molecules (Basel, Switzerland)》2021,26(5)
Two new minor Amaryllidaceae alkaloids were isolated from Hippeastrum × hybridum cv. Ferrari and Narcissus pseudonarcissus cv. Carlton. The chemical structures were identified by various spectroscopic (one- and two-dimensional (1D and 2D) NMR, circular dichroism (CD), high-resolution mass spectrometry (HRMS) and by comparison with literature data of similar compounds. Both isolated alkaloids were screened for their human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE) inhibition activity. One of the new compounds, a heterodimer alkaloid of narcikachnine-type, named narciabduliine (2), showed balanced inhibition potency for both studied enzymes, with IC50 values of 3.29 ± 0.73 µM for hAChE and 3.44 ± 0.02 µM for hBuChE. The accommodation of 2 into the active sites of respective enzymes was predicted using molecular modeling simulation. 相似文献
13.
Mario Caruana Angelique Camilleri Maria Ylenia Farrugia Stephanie Ghio Michaela Jakubí
kov Ruben J. Cauchi Neville Vassallo 《Molecules (Basel, Switzerland)》2021,26(5)
The identification of compounds which protect the double-membrane of mitochondrial organelles from disruption by toxic confomers of amyloid proteins may offer a therapeutic strategy to combat human neurodegenerative diseases. Here, we exploited an extract from the marine brown seaweed Padina pavonica (PPE) as a vital source of natural bioactive compounds to protect mitochondrial membranes against insult by oligomeric aggregates of the amyloidogenic proteins amyloid-β (Aβ), α-synuclein (α-syn) and tau, which are currently considered to be major targets for drug discovery in Alzheimer’s disease (AD) and Parkinson’s disease (PD). We show that PPE manifested a significant inhibitory effect against swelling of isolated mitochondria exposed to the amyloid oligomers, and attenuated the release of cytochrome c from the mitochondria. Using cardiolipin-enriched synthetic lipid membranes, we also show that dye leakage from fluorophore-loaded vesicles and formation of channel-like pores in planar bilayer membranes are largely prevented by incubating the oligomeric aggregates with PPE. Lastly, we demonstrate that PPE curtails the ability of Aβ42 and α-syn monomers to self-assemble into larger β-aggregate structures, as well as potently disrupts their respective amyloid fibrils. In conclusion, the mito-protective and anti-aggregator biological activities of Padina pavonica extract may be of therapeutic value in neurodegenerative proteinopathies, such as AD and PD. 相似文献
14.
Despite advances in antimicrobial and anti-inflammatory therapies, inflammation and its consequences still remain a significant problem in medicine. Acute inflammatory responses are responsible for directly life-threating conditions such as septic shock; on the other hand, chronic inflammation can cause degeneration of body tissues leading to severe impairment of their function. Neuroinflammation is defined as an inflammatory response in the central nervous system involving microglia, astrocytes, and cytokines including chemokines. It is considered an important cause of neurodegerative diseases, such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Lipopolysaccharide (LPS) is a strong immunogenic particle present in the outer membrane of Gram-negative bacteria. It is a major triggering factor for the inflammatory cascade in response to a Gram-negative bacteria infection. The use of LPS as a strong pro-inflammatory agent is a well-known model of inflammation applied in both in vivo and in vitro studies. This review offers a summary of the pathogenesis associated with LPS exposure, especially in the field of neuroinflammation. Moreover, we analyzed different in vivo LPS models utilized in the area of neuroscience. This paper presents recent knowledge and is focused on new insights in the LPS experimental model. 相似文献
15.
Huperzine A (HupA), an alkaloid found in the club moss Huperzia serrata, has been used for centuries in Chinese folk medicine to treat dementia. The effects of this alkaloid have been attributed to its ability to inhibit the cholinergic enzyme acetylcholinesterase (AChE), acting as an acetylcholinesterase inhibitor (AChEI). The biological functions of HupA have been studied both in vitro and in vivo, and its role in neuroprotection appears to be a good therapeutic candidate for Alzheimer´s disease (AD). Here, we summarize the neuroprotective effects of HupA on AD, with an emphasis on its interactions with different molecular signaling avenues, such as the Wnt signaling, the pre- and post-synaptic region mechanisms (synaptotagmin, neuroligins), the amyloid precursor protein (APP) processing, the amyloid-β peptide (Aβ) accumulation, and mitochondrial protection. Our goal is to provide an integrated overview of the molecular mechanisms through which HupA affects AD. 相似文献
16.
Charles Gnanaraj Mahendran Sekar Shivkanya Fuloria Shasank S. Swain Siew Hua Gan Kumarappan Chidambaram Nur Najihah Izzati Mat Rani Tavamani Balan Sarah Stephenie Pei Teng Lum Srikanth Jeyabalan M. Yasmin Begum Vivek Chandramohan Lakshmi Thangavelu Vetriselvan Subramaniyan Neeraj Kumar Fuloria 《Molecules (Basel, Switzerland)》2022,27(9)
Parkinson’s disease (PD) and Alzheimer’s disease (AD) are neurodegenerative disorders that have emerged as among the serious health problems of the 21st century. The medications currently available to treat AD and PD have limited efficacy and are associated with side effects. Natural products are one of the most vital and conservative sources of medicines for treating neurological problems. Karanjin is a furanoflavonoid, isolated mainly from Pongamia pinnata with several medicinal plants, and has been reported for numerous health benefits. However, the effect of karanjin on AD and PD has not yet been systematically investigated. To evaluate the neuroprotective effect of karanjin, extensive in silico studies starting with molecular docking against five putative targets for AD and four targets for PD were conducted. The findings were compared with three standard drugs using Auto Dock 4.1 and Molegro Virtual Docker software. Additionally, the physiochemical properties (Lipinski rule of five), drug-likeness and parameters including absorption, distribution, metabolism, elimination and toxicity (ADMET) profiles of karanjin were also studied. The molecular dynamics (MD) simulations were performed with two selective karanjin docking complexes to analyze the dynamic behaviors and binding free energy at 100 ns time scale. In addition, frontier molecular orbitals (FMOs) and density-functional theory (DFT) were also investigated from computational quantum mechanism perspectives using the Avogadro-ORCA 1.2.0 platform. Karanjin complies with all five of Lipinski’s drug-likeness rules with suitable ADMET profiles for therapeutic use. The docking scores (kcal/mol) showed comparatively higher potency against AD and PD associated targets than currently used standard drugs. Overall, the potential binding affinity from molecular docking, static thermodynamics feature from MD-simulation and other multiparametric drug-ability profiles suggest that karanjin could be considered as a suitable therapeutic lead for AD and PD treatment. Furthermore, the present results were strongly correlated with the earlier study on karanjin in an Alzheimer’s animal model. However, necessary in vivo studies, clinical trials, bioavailability, permeability and safe dose administration, etc. must be required to use karanjin as a potential drug against AD and PD treatment, where the in silico results are more helpful to accelerate the drug development. 相似文献
17.
Yana Zorkina Olga Abramova Valeriya Ushakova Anna Morozova Eugene Zubkov Marat Valikhov Pavel Melnikov Alexander Majouga Vladimir Chekhonin 《Molecules (Basel, Switzerland)》2020,25(22)
Neuropsychiatric diseases are one of the main causes of disability, affecting millions of people. Various drugs are used for its treatment, although no effective therapy has been found yet. The blood brain barrier (BBB) significantly complicates drugs delivery to the target cells in the brain tissues. One of the problem-solving methods is the usage of nanocontainer systems. In this review we summarized the data about nanoparticles drug delivery systems and their application for the treatment of neuropsychiatric disorders. Firstly, we described and characterized types of nanocarriers: inorganic nanoparticles, polymeric and lipid nanocarriers, their advantages and disadvantages. We discussed ways to interact with nerve tissue and methods of BBB penetration. We provided a summary of nanotechnology-based pharmacotherapy of schizophrenia, bipolar disorder, depression, anxiety disorder and Alzheimer’s disease, where development of nanocontainer drugs derives the most active. We described various experimental drugs for the treatment of Alzheimer’s disease that include vector nanocontainers targeted on β-amyloid or tau-protein. Integrally, nanoparticles can substantially improve the drug delivery as its implication can increase BBB permeability, the pharmacodynamics and bioavailability of applied drugs. Thus, nanotechnology is anticipated to overcome the limitations of existing pharmacotherapy of psychiatric disorders and to effectively combine various treatment modalities in that direction. 相似文献
18.
Chao-Hsuan Chen Pei-Chen Hsu Shih-Wei Hsu Kun-Ting Hong Kai-Yuan Chen Jie-Long He Der-Yang Cho Yun-Chi Wang Wen-Shin Chang Da-Tian Bau Chia-Wen Tsai 《Molecules (Basel, Switzerland)》2022,27(13)
6-hydroxydopamine (6-OHDA) is used to induce oxidative damage in neuronal cells, which can serve as an experimental model of Parkinson’s disease (PD). Jujuboside A and B confer free radical scavenging effects but have never been examined for their neuroprotective effects, especially in PD; therefore, in this study, we aimed to investigate the feasibility of jujubosides as protectors of neurons against 6-OHDA and the underlying mechanisms. 6-OHDA-induced neurotoxicity in the human neuronal cell lines SH-SY5Y and SK-N-SH, was used to evaluate the protective effects of jujubosides. These findings indicated that jujuboside A and B were both capable of rescuing the 6-OHDA-induced loss of cell viability, activation of apoptosis, elevation of reactive oxygen species, and downregulation of the expression levels of superoxide dismutase, catalase, and glutathione peroxidase. In addition, jujuboside A and B can reverse a 6-OHDA-elevated Bax/Bcl-2 ratio, downregulate phosphorylated PI3K and AKT, and activate caspase-3, -7, and -9. These findings showed that jujubosides were capable of protecting both SH-SY5Y and SK-N-SH neuronal cells from 6-OHDA-induced toxicity via the rebalancing of the redox system, together with the resetting of the PI3K/AKT apoptotic signaling cascade. In conclusion, jujuboside may be a potential drug for PD prevention. 相似文献
19.
Shanshan Wang Xianbo Kong Zhangjing Chen Guopin Wang Juan Zhang Jing Wang 《Molecules (Basel, Switzerland)》2022,27(13)
Alzheimer’s disease (AD) is a progressive neurological condition. The rising prevalence of AD necessitates the rapid development of efficient therapy options. Despite substantial study, only a few medications are capable of delaying the disease. Several substances with pharmacological activity, derived from plants, have been shown to have positive benefits for the treatment of AD by targeting various enzymes, such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, and monoamine oxidases (MAOs), which are discussed as potential targets. Medicinal plants have already contributed a number of lead molecules to medicine development, with many of them currently undergoing clinical trials. A variety of medicinal plants have been shown to diminish the degenerative symptoms associated with AD, either in their raw form or as isolated compounds. The aim of this review was to provide a brief summary of AD and its current therapies, followed by a discussion of the natural compounds examined as therapeutic agents and the processes underlying the positive effects, particularly the management of AD. 相似文献
20.
Elisa Uliassi Andressa Souza de Oliveira Luciana de Camargo Nascente Luiz Antonio Soares Romeiro Maria Laura Bolognesi 《Molecules (Basel, Switzerland)》2021,26(18)
Alzheimer’s disease (AD) is a complex neurodegenerative disorder with a multifaceted pathogenesis. This fact has long halted the development of effective anti-AD drugs. Recently, a therapeutic strategy based on the exploitation of Brazilian biodiversity was set with the aim of discovering new disease-modifying and safe drugs for AD. In this review, we will illustrate our efforts in developing new molecules derived from Brazilian cashew nut shell liquid (CNSL), a natural oil and a byproduct of cashew nut food processing, with a high content of phenolic lipids. The rational modification of their structures has emerged as a successful medicinal chemistry approach to the development of novel anti-AD lead candidates. The biological profile of the newly developed CNSL derivatives towards validated AD targets will be discussed together with the role of these molecular targets in the context of AD pathogenesis. 相似文献