首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the synthesis of highly flexible and mechanically robust hybrid silica nanowires (NWs) which can be used as novel building blocks to construct superhydrophobic functional materials with three‐dimensional macroporous networks. The hybrid silica NWs, with an average diameter of 80 nm and tunable length of up to 12 μm, are prepared by anisotropic deposition of the hydrolyzed tetraethylorthosilicate in water/n‐pentanol emulsions. A mechanistic investigation reveals that the trimethoxy(octadecyl)silane introduced to the water‐oil interface in the synthesis plays key roles in stabilizing the water droplets to sub‐100 nm and also growing a layer of octadecyl groups on the NW surface. This work opens a solution‐based route for the one‐pot preparation of monodisperse, hydrophobic silica NWs and represents an important step toward the bottom‐up construction of 3D superhydrophobic materials and macroporous membranes.  相似文献   

2.
Quasi-1D ZnO nanowires (NWs) ordered as patterned 3D hollow hierarchical urchin-like structures have been prepared on transparent conducting substrates by electrodeposition. The ZnO NWs have been grown on self-assembled ordered polystyrene microspheres with electrical charge densities ranging from 5 to 30 C cm(-2) and organized arrays of mono and multi-urchin layers have been built. These layers have been sensitized by the highly absorbing D149 indoline organic dye. The optical characterizations and dye titrations have shown a significant increase in the light scattering and absorption as well as dye loading for the organized structures compared to randomly vertically aligned ZnO NWs grown under the same conditions. The dye-sensitized solar cells (DSSC) prepared using the sensitized layers have been characterized by current-voltage (J-V) measurements, IPCE and by electrochemical impedance spectroscopy. We show that the best performances are obtained for the 3D urchin monolayer structures. The conversion efficiency is increased by up to 4 times compared to their counterparts made of randomly dispersed vertical ZnO NWs. Impedance spectroscopy results show a very fast charge transfer in the ZnO NWs and urchin monolayers and that the electron lifetime is in the 4-14 ms range.  相似文献   

3.
Here we describe the synthesis of Ag nanorods (NRs) (aspect ratio <20) and nanowires (NWs) (aspect ratio > or =20) directly on surfaces by seed-mediated growth. The procedure involves attaching gold seed nanoparticles (Au NPs) to 3-mercaptopropyltrimethoxysilane (MPTMS)-functionalized silicon or glass surfaces and growing them into NRs/NWs by placing the substrates into a solution containing cetyltrimethylammonium bromide (CTAB), silver nitrate, and ascorbic acid with the pH ranging from 7 to 12. Under our conditions, Ag NRs/NWs grow optimally at pH 10.6 with a 3% yield, where spherical, triangular, and hexagonal nanostructures represent the other byproducts. The length of Ag NRs/NWs ranges from 50 nm to more than 10 microm, the aspect ratio (AR) ranges from 1.4 to >300, and the average diameter is approximately 35 nm. Approximately 40% of the 1D structures are NRs, and 60% are NWs as defined by their ARs. We also report the alignment of Ag NRs/NWs directly on surfaces by growing the structures on amine-functionalized Si(100) surfaces after an amidation reaction with acetic acid and a method to improve the percentage of Ag NRs/NWs on the surface by removing structures of other shapes with adhesive tape. Surface-grown Ag NRs/NWs also react with salts of palladium, platinum, and gold via galvanic exchange reactions to form high-surface-area 1D structures of the corresponding metal. The combination of the seed-mediated growth of Ag on Au NRs followed by the galvanic exchange of Ag with Pd leads to interesting core/shell NRs grown directly on surfaces. We used scanning electron microscopy, UV-vis spectroscopy, and X-ray photoelectron spectroscopy to characterize the surface-grown nanostructures.  相似文献   

4.
One-dimensional La(2)O(3):Eu(3+) nanowires (NWs) and sub-micrometer samples (SMs) were fabricated by a hydrothermal method. Their photoluminescent characteristics were studied and compared. The results indicated that the exciton band in NWs blue-shifted in contrast to SMs. In comparison with the charge transfer (CT) band, the relative intensity of the exciton band in NWs was lower than that in SMs, which was attributed to the more energy transfer from the exciton band to surface defects. Frequency-selective-excitation spectra indicated that there existed three symmetry sites of Eu(3+) ions in NWs and two sites in SMs. The results of the temperature dependence of (5)D(1)-(7)F(2) lifetimes indicated that the electronic radiative rate of (5)D(1)-Sigma(7)F(J) in the two samples had hardly any variation and the nonradiative transition rate of (5)D(1)-(5)D(0) in NWs increased slightly.  相似文献   

5.
An innovative strategy is proposed to synthesize single-crystal nanowires (NWs) of the Al3+ dicarboxylate MIL-69(Al) MOF by using graphene oxide nanoscrolls as structure-directing agents. MIL-69(Al) NWs with an average diameter of 70±20 nm and lengths up to 2 μm were found to preferentially grow along the [001] crystallographic direction. Advanced characterization methods (electron diffraction, TEM, STEM-HAADF, SEM, XPS) and molecular modeling revealed the mechanism of formation of MIL-69(Al) NWs involving size-confinement and templating effects. The formation of MIL-69(Al) seeds and the self-scroll of GO sheets followed by the anisotropic growth of MIL-69(Al) crystals are mediated by specific GO sheets/MOF interactions. This study delivers an unprecedented approach to control the design of 1D MOF nanostructures and superstructures.  相似文献   

6.
A strategy to covalently attach biological molecules to the electrochemically active surface of indium oxide nanowire (In2O3 NW) mat devices is presented. A self-assembled monolayer (SAM) of 4-(1,4-dihydroxybenzene)butyl phosphonic acid (HQ-PA) was generated on an indium tin oxide (ITO)-coated glass and In2O3 NWs surface. The chemical steps required for surface derivatization were optimized on an ITO surface prior to modifying the In2O3 NWs. The hydroquinone group contained in the HQ-PA SAM was electrochemically oxidized to quinone (Q-PA) at +330 mV. The monolayer of Q-PA was allowed to react with a thiol-terminated DNA. The DNA was paired to its complementary strand tagged with a fluorescence dye. Attachment of DNA was verified using fluorescence microscopy. A device was subsequently prepared on a SiO2-supported mat of In2O3 NWs by depositing gold electrodes on the mat surface. The reaction strategy optimized on ITO was applied to this In2O3 NW-based device. Arrays of In2O3 NWs on a single substrate were electrochemically activated in a selective manner to Q-PA. Activated In2O3 NWs underwent reaction with HS-DNA and gave a positive fluorescence response after pairing with the dye-DNA. The unactivated In2O3 NWs gave no response, thus demonstrating selective functionalization of an In2O3 NW array. This can be considered a key step for the future fabrication of large-scale, inexpensive, nanoscale biosensors.  相似文献   

7.
An innovative strategy is proposed to synthesize single‐crystal nanowires (NWs) of the Al3+ dicarboxylate MIL‐69(Al) MOF by using graphene oxide nanoscrolls as structure‐directing agents. MIL‐69(Al) NWs with an average diameter of 70±20 nm and lengths up to 2 μm were found to preferentially grow along the [001] crystallographic direction. Advanced characterization methods (electron diffraction, TEM, STEM‐HAADF, SEM, XPS) and molecular modeling revealed the mechanism of formation of MIL‐69(Al) NWs involving size‐confinement and templating effects. The formation of MIL‐69(Al) seeds and the self‐scroll of GO sheets followed by the anisotropic growth of MIL‐69(Al) crystals are mediated by specific GO sheets/MOF interactions. This study delivers an unprecedented approach to control the design of 1D MOF nanostructures and superstructures.  相似文献   

8.
Zero-dimensional carbon dots (0D C-dots) and one-dimensional sulfide cadmium nanowires (1D CdS NWs) were prepared by microwave and solvothermal methods, respectively. A series of heterogeneous photocatalysts that consisted of 1D CdS NWs that were modified with 0D C-dots (C-dots/CdS NWs) were synthesized using chemical deposition methods. The mass fraction of C-dots to CdS NWs in these photocatalysts was varied. The photocatalysts were characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and ultraviolet-visible spectroscopy. Their photocatalytic performance for the spitting of water and the degradation of rhodamine B (RhB) under visible light irradiation were investigated. The photocatalytic performance of the C-dots/CdS NWs was enhanced when compared with that of the pure CdS NWs, with the 0.4% C-dots/CdS NWs exhibiting the highest photocatalytic activity for the splitting of water and the degradation of RhB. The enhanced photocatalytic activity was attributed to a higher carrier density because of the heterojunction between the C-dots and CdS NWs. This heterojunction improved the electronic transmission capacity and promoted efficient separation of photogenerated electrons and holes.  相似文献   

9.
Colloidal homobranched ZnSe nanowires (NWs) and heterobranched CdSe-ZnSe NWs are successfully synthesized by combining a sequential seeding strategy with the solution-liquid-solid (SLS) growth process. We have developed an efficient approach to deposit secondary bismuth nanoparticles onto the NW backbone to induce the subsequent SLS branch growth. The density, length, and diameter of branches are rationally controlled by varying reaction conditions. Structural characterization reveals that crystalline branches grow epitaxially from the backbone in both homo- and heterobranched NWs. Two different branching structures are observed in the CdSe-ZnSe heterobranched NWs, owing to the phase admixture, i.e., cubic and hexagonal crystal structures, coexisting in the CdSe NW backbones. These branched NWs with well-designed architectures are expected to have potential as three-dimensional building blocks in the fabrication of nanoscale electronics and photonics.  相似文献   

10.
The controllable synthesis of one-dimensional(1D) structural morphology of metal-organic frameworks(MOFs) is significant for its application in catalysis,sense and gas separation.In this communication,we report a simple and moderate synthetic strategy to obtain uniform HKUST-1 nanobelts(NBs) by using copper nanowires(Cu NWs) as a metal source as well as a template.The control experiments showed that synergy between metal dissolution rate and crystal formation plays a key role in the formation of nanobelts.Our study represents an attractive synthetic strategy of 1 D MOFs-based material for applications.  相似文献   

11.
Despite recent progress in producing perovskite nanowires (NWs) for optoelectronics, it remains challenging to solution-print an array of NWs with precisely controlled position and orientation. Herein, we report a robust capillary-assisted solution printing (CASP) strategy to rapidly access aligned and highly crystalline perovskite NW arrays. The key to the CASP approach lies in the integration of capillary-directed assembly through periodic nanochannels and solution printing through the programmably moving substrate to rapidly guide the deposition of perovskite NWs. The growth kinetics of perovskite NWs was closely examined by in situ optical microscopy. Intriguingly, the as-printed perovskite NWs array exhibit excellent optical and optoelectronic properties and can be conveniently implemented for the scalable fabrication of photodetectors.  相似文献   

12.
Carbon‐coated Mn3O4 nanowires (Mn3O4@C NWs) have been synthesized by the reduction of well‐shaped carbon‐coated bixbyite networks and characterized by TEM, X‐ray diffraction, X‐ray photoelectron spectroscopy, and electrochemical experiments. To assess the properties of 1D carbon‐coated nanowires for their use in supercapacitors, cyclic voltammetry and galvanostatic charging–discharging measurements were performed. Mn3O4@C NWs could be charged and discharged faster and had higher capacitance than bare Mn3O4 nanostructures and other commercial materials. The capacitance of the Mn3O4@C NWs was 92 % retained after 3000 cycles at a charging rate of 5 A g?1. This improvement can be attributed to the carbon shells, which promote fast Faradaic charging and discharging of the interior Mn3O4 core and also act as barriers to protect the inner core. These Mn3O4@C NWs could be a promising candidate material for high‐capacity, low‐cost, and environmentally friendly electrodes for supercapacitors. In addition, the magnetic properties of the as‐synthesized samples are also reported to investigate the influence of the carbon coating.  相似文献   

13.
The activity and stability of Cu nanostructures strongly depend on their sizes, morphology and structures.Here we report the preparation of two-dimensional(2 D) Cu@Cu-BTC core-shell nanosheets(NSs). The thickness of the Cu NSs could be tuned to sub-10 nm through a mild etching process, in which the Cu-BTC in situ grow along with the oxidation on the surface of the Cu NSs. This unique strategy can also be extended to synthesize one-dimensional(1 D) Cu@Cu-BTC nanowires(NWs). Furthermore, the obtained Cu@Cu-BTC NSs could be applied as an effective material to the memory device with the write-onceread-many times(WORM) behavior and the high I_(ON)/I (OFF) ratio(2.7 × 10~3).  相似文献   

14.
采用分子束外延法分别在650-920℃的Si(110)和920℃的Si(111)衬底表面生长出铁的硅化物纳米结构,并主要分析了920℃高温下纳米结构的形貌、组成相及其与Si衬底的取向关系.扫描隧道显微镜(STM)研究表明,920℃高温下,Si(110)衬底上生长的铁硅化合物完全以纳米线的形式存在,且其尺寸远大于650℃低温下外延生长的纳米线尺寸;Si(111)衬底上生长出三维岛和薄膜两种形貌的铁硅化合物,其中三维岛具有金属特性且直径约300 nm、高约155 nm,薄膜厚度约2 nm.电子背散射衍射研究表明920℃高温下Si(110)衬底上生长的纳米线仅以β-FeSi2的形式存在,且β-FeSi2相与衬底之间存在唯一的取向关系:β-FeSi2(101)//Si(11 1);β-FeSi2[010]//Si[110];Si(111)衬底上生长的三维岛由六方晶系的Fe2Si相组成,Fe2Si属于164空间群,晶胞常数为a=0.405 nm,c=0.509 nm;与衬底之间的取向关系为Fe2Si(001)∥Si(111)和Fe2Si[1 20]//Si[112].  相似文献   

15.
Despite recent progress in producing perovskite nanowires (NWs) for optoelectronics, it remains challenging to solution‐print an array of NWs with precisely controlled position and orientation. Herein, we report a robust capillary‐assisted solution printing (CASP) strategy to rapidly access aligned and highly crystalline perovskite NW arrays. The key to the CASP approach lies in the integration of capillary‐directed assembly through periodic nanochannels and solution printing through the programmably moving substrate to rapidly guide the deposition of perovskite NWs. The growth kinetics of perovskite NWs was closely examined by in situ optical microscopy. Intriguingly, the as‐printed perovskite NWs array exhibit excellent optical and optoelectronic properties and can be conveniently implemented for the scalable fabrication of photodetectors.  相似文献   

16.
《中国化学快报》2022,33(8):4017-4020
Surface engineering that could modulate the surface shape to be endowed with the high specific surface ratio, abundant chemical dangling bonds and improved defects exposure is highly desired and needs further exploring. Here, we report a facile strategy of surface engineering on decorating the controllable segmented copper-iron nanowires arrays (Cu-Fe NWs) with their respective hydroxides. Specifically, the pristine segmented Cu-Fe NWs are firstly synthesized via sequentially electrodepositing Cu NWs and Fe NWs inside the nanochannels of anode aluminum oxide (AAO) template. Subsequently, the surface and interface of Cu-Fe NWs are wet-chemically etched, in which the metallic Cu and Fe are partially converted into Cu(OH)x nano-fibrous roots (NFRs) and FeO(OH)y nanoparticles (NPs), and finally decorate around the respective outer-surface of Cu NWs and Fe NWs segments. As one case of the applications in hydrogen evolution reaction (HER), our surface-modified Cu-Fe NWs exhibit improved catalytic activity compared with Fe NWs.  相似文献   

17.
A hierarchical nanostructure consisting of uniform copper oxide nanowires vertically grown on three-dimensional copper framework (CuO NWs/3D-Cu foam) was prepared by a two-step synthetic process. The uniform CuO NWs anchored onto the 3D foam exhibited outstanding electrocatalytic activity towards hydrogen peroxide reduction due to the unique one‐dimensional direction with its excellent catalytic activity and large surface area of 3D substrate, which enhanced electroactive sites and charge conductivity. As a result, a wide linear detection range of 1 µM–1 mM, good sensitivity of 8.87 µA/(mM ⋅ cm2), low detection limit of 0.98 µM, and rapid response time of 5 s to hydrogen peroxide were achieved under a working potential of −0.4 V in phosphate buffer solution (pH of 7.4). In addition, the CuO NWs/3D-Cu foam material showed excellent selectivity to hydrogen peroxide and good resistance against poisonous interferents, including ascorbic acid, dopamine, urea, uric acid, and potassium chloride. Furthermore, the CuO NWs/3D-Cu foam presented good reproducibility, stability, and accurate detection for hydrogen peroxide in real sample; therefore, it may be considered to be a potential free-standing hydrogen peroxide sensor in practical analysis applications.  相似文献   

18.
采用分子束外延法分别在650-920 ℃的Si(110)和920 ℃的Si(111)衬底表面生长出铁的硅化物纳米结构,并主要分析了920 ℃高温下纳米结构的形貌、组成相及其与Si 衬底的取向关系. 扫描隧道显微镜(STM)研究表明,920 ℃高温下,Si(110)衬底上生长的铁硅化合物完全以纳米线的形式存在,且其尺寸远大于650 ℃低温下外延生长的纳米线尺寸;Si(111)衬底上生长出三维岛和薄膜两种形貌的铁硅化合物,其中三维岛具有金属特性且直径约300 nm、高约155 nm,薄膜厚度约2 nm. 电子背散射衍射研究表明920 ℃高温下Si(110)衬底上生长的纳米线仅以β-FeSi2的形式存在,且β-FeSi2相与衬底之间存在唯一的取向关系:β-FeSi2(101)//Si(111);β-FeSi2 [010]//Si[110];Si(111)衬底上生长的三维岛由六方晶系的Fe2Si 相组成,Fe2Si 属于164 空间群,晶胞常数为a=0.405 nm,c=0.509 nm;与衬底之间的取向关系为Fe2Si(001)∥Si(111)和Fe2Si[120]//Si[112].  相似文献   

19.
Multicomponent Pt‐based nanowires (NWs) have attracted widespread attention as eletrocatalysts toward direct alcohol fuel cells because of their unique one‐dimensional structure and high reaction dynamics. Quaternary PtPdAuTe NWs are designed via a facile template method, and NWs with a different composition are obtained by adjusting the feed ratio of metal precursors. The direct displacement reaction of metal precursors with Te NWs and the partial oxidation of Te lead to the formation of quaternary NWs. The rough surface and abundant reactive sites deriving from the rearrangement of metal atoms on the Te NWs surface endow the PtPdAuTe NWs with a superior electrocatalytic property and durability for methanol oxidation. The Pt20Pd20Au10Te50 NWs display the largest mass activity and best stability among all catalysts. The preparation of PtPdAuTe NWs could provide a viable strategy for the preparation of other multicomponent NWs.  相似文献   

20.
One-dimensional ultrathin nanowires(NWs) offer a great deal of promising properties for electrochemical energy storage and conversion due to their nanoscale confinement effect and high surface-to-volume ratios. It is highly desirable to precisely design and synthesize ultrathin Ti3C2 NWs in the aspect of size,crystalline structure and composition. Here, we report a simple alkalization strategy to design the ultrathin Ti3C2 NWs for hydrogen evolution re...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号