首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The microwave-mediated self-assembly of [W(V)(CN)(8)](3-) with Cu(II) in the presence of pyrazole ligand resulted in the formation of three novel assemblies: Cu(II)(2)(Hpyr)(5)(H(2)O)[W(V)(CN)(8)](NO(3))·H(2)O (1), {Cu(II)(5)(Hpyr)(18)[W(V)(CN)(8)](4)}·[Cu(II)(Hpyr)(4)(H(2)O)(2)]·9H(2)O (2), and Cu(II)(4)(Hpyr)(10)(H(2)O)[W(V)(CN)(8)](2)(HCOO)(2)·4.5H(2)O (3) (Hpyr =1H-pyrazole). Single-crystal X-ray structure of 1 consists of cyanido-bridged 1-D chains of vertex-sharing squares topology. The structure of 2 reveals 2-D hybrid inorganic layer topology with large coordination spaces occupied by {Cu(Hpyr)(2)(H(2)O)(4)}(2+) ions. Compound 3 contains two types of cyanido-bridged 1-D chains of vertex-sharing squares linked together by formate ions in two directions forming hybrid inorganic-organic 3-D framework (I(1)O(2)). The magnetic measurements for 1-3 reveal a weak ferromagnetic coupling through Cu(II)-NC-W(V) bridges.  相似文献   

2.
The use of 1,3,5-triaminocyclohexane (tach) as a capping ligand in generating metal-cyanide cage clusters with accessible cavities is demonstrated. The precursor complexes [(tach)M(CN)(3)] (M = Cr, Fe, Co) are synthesized by methods similar to those employed in preparing the analogous 1,4,7-triazacyclononane (tacn) complexes. Along with [(tach)Fe(CN)(3)](1)(-), the latter two species are found to adopt low-spin electron configurations. Assembly reactions between [(tach)M(CN)(3)] (M = Fe, Co) and [M'(H(2)O)(6)](2+) (M' = Ni, Co) in aqueous solution afford the clusters [(tach)(4)(H(2)O)(12)Ni(4)Co(4)(CN)(12)](8+), [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+), and [(tach)(4)(H(2)O)(12)Ni(4)Fe(4)(CN)(12)](8+), each possessing a cubic arrangement of eight metal ions linked through edge-spanning cyanide bridges. This geometry is stabilized by hydrogen-bonding interactions between tach and water ligands through an intervening solvate water molecule or bromide counteranion. The magnetic behavior of the Ni(4)Fe(4) cluster indicates weak ferromagnetic coupling (J = 5.5 cm(-)(1)) between the Ni(II) and Fe(III) centers, leading to an S = 6 ground state. Solutions containing [(tach)Fe(CN)(3)] and a large excess of [Ni(H(2)O)(6)](2+) instead yield a trigonal pyramidal [(tach)(H(2)O)(15)Ni(3)Fe(CN)(3)](6+) cluster, in which even weaker ferromagnetic coupling (J = 1.2 cm(-)(1)) gives rise to an S = (7)/(2) ground state. Paralleling reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], [(tach)Cr(CN)(3)] reacts with [Ni(H(2)O)(6)](2+) in aqueous solution to produce [(tach)(8)Cr(8)Ni(6)(CN)(24)](12+), featuring a structure based on a cube of Cr(III) ions with each face centered by a square planar [Ni(CN)(4)](2)(-) unit. The metal-cyanide cage differs somewhat from that of the analogous Me(3)tacn-ligated cluster, however, in that it is distorted via compression along a body diagonal of the cube. Additionally, the compact tach capping ligands do not hinder access to the sizable interior cavity of the molecule, permitting host-guest chemistry. Mass spectrometry experiments indicate a 1:1 association of the intact cluster with tetrahydrofuran (THF) in aqueous solution, and a crystal structure shows the THF molecule to be suspended in the middle of the cluster cavity. Addition of THF to an aqueous solution containing [(tach)Co(CN)(3)] and [Cu(H(2)O)(6)](2+) templates the formation of a closely related cluster, [(tach)(8)(H(2)O)(6)Cu(6)Co(8)(CN)(24) superset THF](12+), in which paramagnetic Cu(II) ions with square pyramidal coordination are situated on the face-centering sites. Reactions intended to produce the cubic [(tach)(4)(H(2)O)(12)Co(8)(CN)(12)](8+) cluster frequently led to an isomeric two-dimensional framework, [(tach)(H(2)O)(3)Co(2)(CN)(3)](2+), exhibiting mer rather than fac stereochemistry at the [Co(H(2)O)(3)](2+) subunits. Attempts to assemble larger edge-bridged cubic clusters by reacting [(tach)Cr(CN)(3)] with [Ni(cyclam)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) complexes instead generated extended one- or two-dimensional solids. The magnetic properties of one of these solids, two-dimensional [(tach)(2)(cyclam)(3)Ni(3)Cr(2)(CN)(6)]I(2), suggest metamagnetic behavior, with ferromagnetic intralayer coupling and weak antiferromagnetic interactions between layers.  相似文献   

3.
Two new cyano-bridged one-dimensional heterobimetallic coordination polymers, [(bpca)(2)Fe(III)(2)(CN)(6)Cu(H(2)O)(2).1.5H(2)O](n)() (2) and [(bpca)Fe(III)(CN)(3)Cu(bpca)(H(2)O).H(2)O](n)() (3), and a trinuclear complex, [(bpca)(2)Fe(III)(2)(CN)(6)Mn(CH(3)OH)(2)(H(2)O)(2)].2H(2)O (4), have been synthesized using the tailored tricyanometalate precursor (Bu(4)N)[Fe(bpca)(CN)(3)].H(2)O (1) (Bu(4)N(+) = tetrabutylammonium cation; bpca = bis(2-pyridylcarbonyl)amidate anion) as a building block and structurally characterized. In complex 2, the Cu(II) ions are six-coordinated in an elongated distorted octahedral environment, and they are linked by distorted octahedrons of [Fe(bpca)(CN)(3)](-) to form 1D chain of squares. Complex 3 is an unexpected chiral heterobimetallic helical chain complex, in which the helical chain consists of the asymmetric unit of [(bpca)Fe(CN)(3)Cu(bpca)(H(2)O)]. In complex 4, there are two independent trinuclear clusters in one asymmetric unit, and the coordination modes of the two methanol and two water molecules coordinating to the central Mn(II) ion are different (cis and trans). Complex 2 shows metamagnetic behavior with a Neel temperature of T(N) = 2.2 K and a critical field of 250 Oe at 1.8 K, where the cyanides mediate the intrachain ferromagnetic coupling between the Cu(II) and Fe(III) ions. Complex 3 shows ferromagnetic coupling between Cu(II) and Fe(III) ions, the best-fit for chi(M)T versus T using a 1D alternating chain model leads to the parameters J(1) = 7.9(3) cm(-)(1), J(2) = 1.03(2) cm(-)(1), and g = 2.196(3). Complex 4 exhibits ferrimagnetic behavior caused by the noncompensation of the local interacting spins (S(Mn) = 5/2 and S(Fe) = 1/2) which interact antiferromagnetically through bridging cyano groups.  相似文献   

4.
The supramolecular interplay of Me(3)Sn(+) and [M(CN)(2n)](n-) ions (n=3 and 4) with either 4,4'-bipyridine (bpy), trans-bis(4-pyridyl)ethene (bpe) or 4cyanopyridine (cpy) in the presence of H(2)O has been investigated for the first time. Crystal structures of the six novel assemblies: [(Me(3)Sn)(4)Mo(IV)(CN)(8).2 H(2)O.bpy] (8) and [(Me(3)Sn)(4)Mo(IV)(CN)(8).2 H(2)O.bpe] (8 a; isostructural), [(Me(3)Sn)(3)Fe(III)(CN)(6).4 H(2)O.bpy] (9), [(Me(3)Sn)(3)Co(III)(CN)(6).3 H(2)O.3/2 bpy] (10), [(Me(3)Sn)(4)Fe(II)(CN)(6).H(2)O.3/2 bpy] (11), and [(Me(3)Sn)(4)Ru(II)(CN)(6).2 H(2)O.3/2 cpy] (12) are presented. H(2)O molecules are usually coordinated to tin atoms and involved in two significant O-H.N hydrogen bonds, wherein the nitrogen atoms belong either to bpy (bpe, cpy) molecules or to M-coordinated cyanide ligands. Extended supramolecular assemblies such as -CN-->Sn(Me(3))<--O(H.)H.N(L)N.HO(H.)-->Sn(Me(3))<--NC- (L=bpy, bpe or cpy) function as efficient metal connectors (or spacers) in the structures of all six compounds. Only in the three-dimensional framework of 11, one third of all bpy molecules is involved in coordinative N-->Sn bonds. The supramolecular architecture of 9 involves virtually non-anchored (to cyanide N atoms), Me(3)Sn(+) units with a strictly planar SnC(3) skeleton, and two zeolitic H(2)O molecules. Pyrazine (pyz) is surprisingly reluctant to afford assemblies similar to 8-12, however, the genuine host-guest systems [(Me(3)Sn)(4)Mo(CN)(8).0.5pyz] and [(Me(3)Sn)(4)Mo(CN)(8).pym] (pym=pyrimidine) could be isolated and also structurally characterized.  相似文献   

5.
Yao MX  Wei ZY  Gu ZG  Zheng Q  Xu Y  Zuo JL 《Inorganic chemistry》2011,50(17):8636-8644
Using the tricyano precursor (Bu(4)N)[(Tp)Cr(CN)(3)] (Bu(4)N(+) = tetrabutylammonium cation; Tp = tris(pyrazolyl)hydroborate), a pentanuclear heterometallic cluster [(Tp)(2)Cr(2)(CN)(6)Cu(3)(Me(3)tacn)(3)][(Tp)Cr(CN)(3)](ClO(4))(3)·5H(2)O (1, Me(3)tacn = N,N',N'-trimethyl-1,4,7-triazacyclononane), three tetranuclear heterometallic clusters [(Tp)(2)Cr(2)(CN)(6)Cu(2)(L(OEt))(2)]·2.5CH(3)CN (2, L(OEt) = [(Cp)Co(P(O)(OEt)(2))(3)], Cp = cyclopentadiene), [(Tp)(2)Cr(2)(CN)(6)Mn(2)(L(OEt))(2)]·4H(2)O (3), and [(Tp)(2)Cr(2)(CN)(6)Mn(2)(phen)(4)](ClO(4))(2) (4, phen = phenanthroline), and a one-dimensional (1D) chain polymer [(Tp)(2)Cr(2)(CN)(6)Mn(bpy)](n) (5, bpy = 2,2'-bipyridine) have been synthesized and structurally characterized. Complex 1 shows a trigonal bipyramidal geometry in which [(Tp)Cr(CN)(3)](-) units occupy the apical positions and are linked through cyanide to [Cu(Me(3)tacn)](2+) units situated in the equatorial plane. Complexes 2-4 show similar square structures, where Cr(III) and M(II) (M = Cu(II) or Mn(II)) ions are alternatively located on the rectangle corners. Complex 5 consists of a 4,2-ribbon-like bimetallic chain. Ferromagnetic interactions between Cr(III) and Cu(II) ions bridged by cyanides are observed in complexes 1 and 2. Antiferromagnetic interactions are presented between Cr(III) and Mn(II) ions bridged by cyanides in complexes 3-5. Complex 5 shows metamagnetic behavior with a critical field of about 22.5 kOe at 1.8 K.  相似文献   

6.
Substitution of the weakly binding aqua ligand in [Cu(tren)OH2](2+) and [Cu(tpa)OH2](2+) (tren = tris(2-aminoethyl)amine; tpa = tris(2-pyridylmethyl)amine) by a cyano ligand on ferricyanide results in the assembly of heteropolynuclear cations around the cyanometalate core. In water, the reduction of the Fe(III) core to Fe(II) generates complexes that feature heteropolycations in which ferrocyanide is encapsulated by the Cu(II) moieties: [(Cu(tpa)CN)6Fe][ClO4]8-3H2O 1, [(Cu(tren)CN)6Fe][ClO4]8-10H2O 2, [(Cu(tren)CN)6Fe][Fe(CN)6]2[ClO4]2-15.8H2O 3, and [(Cu(tren)CN)6Fe][(Cu(tren)CN)4Fe(CN)2][Fe(CN)6)]4-6DMSO-21H2O 4. The formation of discrete molecules, in preference to extended networks or polymeric structures, has been encouraged through the use of branched tetradentate ligands in conjunction with copper(II), a metal center with the propensity to form five-coordinate complexes. Complex 3 crystallizes in the monoclinic space group P2(1)/c (#14) with a = 14.8674(10), b = 25.9587(10), c = 27.5617(10) A, beta = 100.8300(10) degrees, and Z = 4, and it is comprised of almost spherical heptanuclear cations, [(Cu(tren)CN)6Fe](8+), whose charge is balanced by two ferricyanide and two perchlorate counteranions. Complex 4 crystallizes in the triclinic space group P1 (# 1) with a = 14.8094(8), b = 17.3901(7), c = 21.1565(11) A, alpha = 110.750(3), beta = 90.206(2), gamma = 112.754(3) degrees, and Z = 1, and it is comprised of the heptanuclear [(Cu(tren)CN)6Fe](8+) cation and pentanuclear [(Cu(tren)CN)4Fe(CN)2](4+) cation, whose terminal cyano ligands are oriented trans to each other. The charge is balanced exclusively by ferricyanide counteranions. In both complexes, H-bonding interactions between hydrogens on primary amines of the tren ligand, terminal cyano groups of the ferricyanide counterions, and the solvent of crystallization generate intricate 3D H-bonding networks.  相似文献   

7.
Three isostructural cyanido-bridged heptanuclear complexes, [{Cu(II)(saldmen)(H?O)}?{M(III)(CN)?}]-(ClO?)?·8H?O (M= Fe(III) 2; Co(III), 3; Cr(III) 4), have been obtained by reacting the dinuclear copper(II) complex, [Cu?(saldmen)?(μ-H?O)(H?O)?](ClO?)?·2H?O 1, with K?[Co(CN)?], K?[Fe(CN)?], and K?[Cr(CN)?], respectively (Hsaldmen is the Schiff base resulting from the condensation of salicylaldehyde with N,N-dimethylethylenediamine). A unique octameric water cluster, with bicyclo[2,2,2]octane-like structure, is sandwiched between the heptanuclear cations in 2, 3 and 4. The cryomagnetic investigations of compounds 2 and 4 reveal ferromagnetic couplings of the central Fe(III) or Cr(III) ions with the Cu(II) ions (J(CuFe) = +0.87 cm?1, J(CuCr) = +30.4 cm?1). The intramolecular Cu···Cu exchange interaction in 3, across the diamagnetic cobalt(III) ion, is -0.3 cm?1. The solid-state 1H-NMR spectra of compounds 2 and 3 have been investigated.  相似文献   

8.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

9.
A single crystal of the title compound [MnII6(H2O)9[W(V)(CN)8]4 x 13H2O]n was synthesized in a hot aqueous solution containing octacyanotungstate, Na3[W(CN)8] x 3H2O, and Mn(ClO4)2 x 6H2O. The compound crystallized in the monoclinic system, space group P2(1)/c with cell constants a = 15.438(2) A, b = 14.691(2) A, c = 33.046(2) A, beta = 94.832(9) degrees, and Z = 4. The crystal consists of a W(V)-CN-MnII linked three-dimensional network [[MnII(H2O)]3[MnII(H2O)2]3[W(V)(CN)8]4]n and H2O molecules as crystal solvates. There are two kinds of W sites: one is close to a dodecahedron geometry with six bridging and two terminal CN ligands; the other is close to a bicapped trigonal prism with seven bridging and one terminal CN ligands. The field-cooled magnetization measurement showed that the compound exhibits a spontaneous magnetization below Tc = 54 K. Further magnetization measurements on the field dependence reveal it to be a ferrimagnet where all of the MnII ions are antiparallel to all the W(V) ions.  相似文献   

10.
With the use of Kl?ui's tripodal ligand, [(Cp)Co(P(O)(OEt)(2))(3)](-) (L(CoEt), Cp = cyclopentadiene) as the auxiliary ligand to react with different metal salts and tricyanometalate building blocks, five neutral trimetallic hexanuclear complexes: [(Tp)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·6H(2)O (1, Tp = hydridotris(pyrazolyl)borate), [(Tp*)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·2H(2)O (2, Tp* = hydridotris(3,5-dimethyl-pyrazolyl)borate), [(pzTp)(2)Fe(2)(CN)(6)Cu(2)(L(CoEt))(2)]·H(2)O·3MeOH (3, pzTp = tetra(pyrazolyl)borate), [(Tp)(2)Fe(2)(CN)(6)Ni(2)(L(CoEt))(2)(MeCN)(2)]·2MeCN·2H(2)O (4) and [(Tp)(2)Fe(2)(CN)(6)Mn(2)(L(CoEt))(2)(MeCN)(2)]·2MeCN (5), have been obtained and structurally characterized. Magnetic measurements confirm that there are ferromagnetic couplings between the cyano-bridged Fe and Cu/or Ni ions and antiferromagnetic interaction between the cyano-bridged Fe and Mn ions. Slow relaxation of the magnetization is observed in complexes 1 and 4, while complex 3 exhibits metamagnetic behavior with a critical field of 17.5 kOe.  相似文献   

11.
Reactions between the complex [MnII(L)]2+, where L is a N3O2 macrocyclic ligand, and different cyanometalate precursors such as [M(CN)n]m- (M(III) = Cr, Fe; M(II) = Fe, Ni, Pd, Pt) lead to cyano-bridged molecular assemblies exhibiting a variety of structural topologies. The reaction between [MnII(L)]2+ and [FeII(CN)6]4- forms a trinuclear complex with formula [(MnII(L)(H2O))2(FeII(micro-CN)2(CN)4)] x 2MeOH x 10H2O (1) which crystallizes in the triclinic space group P1. The reaction between [MnII(L)]2+ and [M(II)(CN)4]2-, where M(II) = Ni (2), Pd (3), Pt (4), gives rise to three isostructural linear chain compounds with stoichiometry [(MnII(L))(M(II)(micro-CN)2(CN)2)]n and which crystallize in the monoclinic space group C2/c. The self-assembly between [MnII(L)]2+ with [M(III)(CN)6]3-, where M(III) = Cr (5), Fe (6, 7, 8), forms three types of compounds. Compounds 5 and 6 are isostructural (monoclinic, space group P2(1)/n), and the structures comprise anionic linear chains [(MnII(L))(M(III)(micro-CN)2(CN)4)]n(n-) with cationic trinuclear complexes [(MnII(L)(H2O))2(M(III)(micro-CN)2(CN)4)]+ as counterions. Using an excess of K3[FeIII(CN)6], an analogous compound to 6 but with K+ as counterion is obtained (7), which crystallizes in the triclinic space group P1. Compound 8 consists of 2-D layers with formula [(MnII(L))3(FeIII(micro-CN)4(CN)2)(FeIII(micro-CN)2(CN)4)]n x 2nMeOH; it crystallizes in the monoclinic space group P2(1)/n. The magnetic properties were investigated for all samples. In particular, compound 5, which shows antiferromagnetic exchange interactions between Mn(II) and Cr(III) ions through cyanide bridging ligands, has been studied in detail; the magnetic exchange parameter amounts to J = -7.5(7) cm(-1). Compound 8 shows a magnetically ordered phase below 6.4 K which is confirmed by M?ssbauer spectroscopy; two hyperfine split spectra were observed below Tc from which IJI values of 2.1 and 1.6 cm(-1) could be deduced.  相似文献   

12.
The reactions of the low-temperature polymorph of copper(I) cyanide (LT-CuCN) with concentrated aqueous alkali-metal halide solutions have been investigated. At room temperature, KX (X = Br and I) and CsX (X = Cl, Br, and I) produce the addition products K[Cu(2)(CN)(2)Br].H(2)O (I), K(3)[Cu(6)(CN)(6)I(3)].2H(2)O (II), Cs[Cu(3)(CN)(3)Cl] (III), Cs[Cu(3)(CN)(3)Br] (IV), and Cs(2)[Cu(4)(CN)(4)I(2)].H(2)O (V), with 3-D frameworks in which the -(CuCN)- chains present in CuCN persist. No reaction occurs, however, with NaX (X = Cl, Br, I) or KCl. The addition compounds, I-V, reconvert to CuCN when washed. Both low- and high-temperature polymorphs of CuCN (LT- and HT-CuCN) are produced, except in the case of Cs[Cu(3)(CN)(3)Cl] (III), which converts only to LT-CuCN. Heating similar AX-CuCN reaction mixtures under hydrothermal conditions at 453 K for 1 day produces single crystals of I-V suitable for structure determination. Under these more forcing conditions, reactions also occur with NaX (X = Cl, Br, I) and KCl. NaBr and KCl cause some conversion of LT-CuCN into HT-CuCN, while NaCl and NaI, respectively, react to form the mixed-valence Cu(I)/Cu(II) compounds [Cu(II)(OH(2))(4)][Cu(I)(4)(CN)(6)], a known phase, and [Cu(II)(OH(2))(4)][Cu(I)(4)(CN)(4)I(2)] (VI), a 3-D framework, which contains infinite -(CuCN)- chains. After 3 days of heating under hydrothermal conditions, the reaction between KI and CuCN produces [Cu(II)(OH(2))(4)][Cu(I)(2)(CN)I(2)](2) (VII), in which the CuCN chains are broken into single Cu-CN-Cu units, which in turn are linked into chains via iodine atoms and then into layers via long Cu-C and Cu-Cu interactions.  相似文献   

13.
Jiang L  Feng XL  Lu TB  Gao S 《Inorganic chemistry》2006,45(13):5018-5026
The preparation and crystal structures of five cyano-bridged Fe-Mn complexes, [(bipy)2Fe(II)(CN)2Mn(II)(bipy)2]2(ClO4)4 (1), [(bipy)2Fe(II)(CN)2Mn(II)(DMF)3(H2O)]2(ClO4)4 (2), {[(Tp)Fe(III)(CN)3]2Mn(II)(DMF)2(H2O)}2 (3), {[(Tp)Fe(III)(CN)3]2Mn(II)(DMF)2}n (4), and Na2[Mn(II)Fe(II)(CN)6] (5) (bipy = 2,2'-bipyridine, Tp = tris(pyrazolyl)hydroborate), are reported here. Compounds 1-4 contain the basic Fe2(CN)4Mn2 square building units, of which 1-3 show the motif of discrete molecular squares of Fe2(CN)4Mn2 and 4 possesses a 1D double-zigzag chain-like structure, while compound 5 is a 3D cubic framework analogous to that of Prussian blue. Compounds 1 and 2 show weak ferromagnetic interactions between two Mn(II) ions through the bent -NC-Fe(II)-CN- bridges. Compound 3 shows weak antiferromagnetic coupling between the Fe(III) and Mn(II) ions, while compound 4 displays a metamagnetic-like behavior with TN = 5.2 K and Hc = 10.5 kOe. Compound 5 exhibits a ferromagnetic ordering with Tc= 3.5 K, coercive field, Hc, = 330 G, and a remnant magnetization of 503 cm3 Oe mol(-1).  相似文献   

14.
Cu3[W(CN)8]2(pyrimidine)2(3-cyanopyridine)2 · 4H2O, a cyanide-bridged copper(II) octacyanotungstate(V) with two types of organic ligands (pyrimidine and 3-cyanopyridine), is prepared. In this compound, the coordination geometry of W is an 8-coordinated bicapped trigonal prism where five CN groups of [W(CN)8] are bridged to five Cu ions, and the remaining three CN groups are free. The coordination geometries of the three types of Cu ions (Cu1, Cu2, and Cu3) are 6-coordinated pseudo-octahedron. The cyano-bridged-Cu2–W–Cu3-layer is linked by a Cu1 pillar unit, and a cavity along the a axis, which is occupied by 3-cyanopyridine molecules and zeolitic water molecules, exists. The present compound shows ferrimagnetism with a Currie temperature of 7 K, a saturation magnetization of 2.9 μB, and a coercive field of 7 Oe at 2 K.  相似文献   

15.
The syntheses, X-ray structures, and magnetic behaviors of two new cyano-bridged assemblies, the molecular [Mn(III)(salen)H2O]3[W(V)(CN)8].H2O (1) and one-dimensional [Mn(salen)(H2O)2]2[[Mn(salen)(H2O)][Mn(salen)]2[Mo(CN)(8)]].0.5ClO4.0.5OH.4.5H2O (2), are presented. Compound 1 crystallizes in the monoclinic system, has space group P2(1)/c, and has unit cell constants a = 13.7210(2) A, b = 20.6840(4) A, c = 20.6370(2) A, and Z = 4. Compound 2 crystallizes in the triclinic system, has space group P, and has unit cell dimensions a = 18.428(4) A, b = 18.521(3) A, c = 18.567(4) A, and Z = 2. The structure of 1 consists of the asymmetric V-shaped Mn-NC-W-NC-Mn-O(phenolate)-Mn molecules, where W(V) coordinates with [Mn(salen)H2O] and singly phenolate-bridged [Mn(salen)H2O]2 moieties through the neighboring cyano bridges. The [W(V)(CN)8]3- ion displays distorted square-antiprism geometry. The structure of 2 consists of the cyano-bridged [Mn3(III)Mo(IV)]n- repeating units linked by double phenolate bridges into one-dimensional zigzag chains. The Mn(III) centers are bound to Mo(IV) of square-antiprism geometry through the neighboring cyano bridges. The magnetic studies of 1 reveal the antiferromagnetic intramolecular interactions through the CN and phenolate bridges and the relatively weak intermolecular interactions. Compound 1 becomes antiferromagnetically ordered below TN = 4.6 K. The presence of the magnetic anisotropy is documented with the MH measurements carried out for both polycrystalline and single-crystal samples. At T = 1.9 K, the spin-flop transition is observed in the field of 18 kOe applied parallel to the bc plane, which is the easy plane of magnetization. Field dependence of magnetization of 1 shows field-induced metamagnetic behavior from the antiferromagnetic ground state of ST = 3/2 to the state of ST = 5/2. The magnetic properties of 2 indicate a weak antiferromagnetic interaction between Mn(III) centers in double-phenolate-bridged [Mn(III)(salen)]2 dinuclear subunits and a very weak ferromagnetic interaction between them through the diamagnetic [Mo(IV)(CN)8]4- spacer.  相似文献   

16.
Gu ZG  Liu W  Yang QF  Zhou XH  Zuo JL  You XZ 《Inorganic chemistry》2007,46(8):3236-3244
Two tricyanometallate precursors, (Bu4N)[(Tp4Bo)Fe(CN)3].H2O.2MeCN (1) and (Bu4N)[(pzTp)Fe(CN)3] (2) [Bu4N+ = tetrabutylammonium cation; Tp4Bo = tris(indazolyl)hydroborate; pzTp = tetrakis(pyrazolyl)borate], with a low-spin FeIII center have been synthesized and characterized. The reactions of 1 or 2 with [Cu(Me3tacn)(H2O)2](ClO4)2 (Me3tacn = N,N',N' '-trimethyl-1,4,7-triazacyclononane) afford two pentanuclear cyano-bridged clusters, [(Tp4Bo)2(Me3tacn)3Cu3Fe2(CN)6](ClO4)4.5H2O (3) and [(pzTp)2(Me3tacn)3Cu3Fe2(CN)6](ClO4)4.4H2O (4), respectively. Assembly reactions between 2 and [Ni(phen)(CH3OH)4](ClO4)2 (phen = 1,10-phenanthroline) or Zn(OAc)2.2H2O afford a molecular box [(pzTp)4(phen)4Ni4Fe4(CH3OH)4(CN)12](ClO4)4.4H2O (5) and a rectangular cluster [(pzTp)2Zn2Fe2(OAc)2(H2O)2(CN)6] (6). Their molecular structures were determined by single-crystal X-ray diffraction. In complexes 1 and 2, the central FeIII ions are coordinated by three cyanide carbon atoms and three nitrogen atoms of Tp4Bo- or pzTp-. Both complexes 3 and 4 show a trigonal-bipyramidal geometry, in which [(L)Fe(CN)3]- units occupy the apical positions and are linked through cyanide to [Cu(Me3tacn)]2+ units situated in the equatorial plane. Complex 5 possesses a cubic arrangement of eight metal irons linked through edge-spanning cyanide bridges, while complex 6 shows Zn2Fe2(CN)4 rectangular structure, in which FeIII and ZnII ions are alternately bridged by the cyanide groups. Intramolecular ferromagnetic couplings are observed for complexes 3-5, and they have S = 5/2, 5/2, and 6 ground states and appreciable magnetic anisotropies with negative D values equal to -0.49, -2.39, and -0.39 cm-1, respectively.  相似文献   

17.
A novel two-dimensional cyanide-bridged polymer [CuII(tren)]{CuI[W(V)(CN)8]} . 1.5H2O (tren = tris(2-aminoethyl)amine) formed via the simultaneous in situ metal-ligand redox reaction of [Cu(tren)(OH2)]2+ and self-assembly with [W(V)(CN)8]3- consists of a {CuI[W(V)(CN)8]} square grid built of CuI centres of tetrahedral geometry coordinatively saturated by CN bridges and [W(V)(CN)8]3- capped by [CuII(tren)]2+ moieties; it exhibits ferromagnetic coupling J1 = +5.8(1) cm(-1) within the CuII-W(V) dinuclear subunits and weak antiferromagnetic coupling J2 = -0.03(1) cm(-1) between them through diamagnetic CuI spacers.  相似文献   

18.
We report on the synthesis, molecular structure and magnetic properties of two novel coordination polymers: [{Cu(II)(4)(pic)(2)(H(2)O)(2)(MeOH)}{W(V)(CN)(8)}(2)]·MeOH·4H(2)O (1) and [{Mn(II)(3)(HCOO)(2)(H(2)O)(4)}{Mn(II)(H(2)O)(3)(HCONH(2))}(2){Nb(IV)(CN)(8)}(2)]·4HCONH(2)·2H(2)O (2). The single-crystal X-ray diffraction analysis of 1 shows that its molecular structure can be interpreted as a cyanido bridged (3,4,7)-connected 2D bilayer built of two different subnets sharing the tungsten centers. The magnetic measurements suggest that the system reveals long-range ferromagnetic ordering between Cu(II) and W(V) centers below 13.4 K. The molecular structure of (2) reveals a 2D topology of layers built of cyanido and formato bridging ligands. The system reveals ferrimagnetic behavior with a critical temperature at 17.8 K.  相似文献   

19.
The bimetallic complexes [[Fe(III)(phen)(CN)4]2Cu(II)(H2O)2].4H2O (1), [[Fe(III)(phen)(CN)4]2Cu(II)].H2O (2) and [[Fe(III)(bipy)(CN)4]2Cu(II)].2H2O (3) and [[Fe(III)(bipy)(CN)4]2Cu(II)(H2O)2].4H2O (4) (phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine) have been prepared and the structures of 1-3 determined by X-ray diffraction. The structure of 1 is made up of neutral cyanide-bridged Fe(III)-Cu(II) zigzag chains of formula [[Fe(III)(phen)(CN)4]2Cu(II)(H2O)2] and uncoordinated water molecules with the [Fe(phen)(CN)4]- entity acting as a bis-monodentate bridging ligand toward two trans-diaquacopper(II) units through two of its four cyanide groups in cis positions. The structure of 2 can be viewed as the condensation of two chains of 1 connected through single cyanide-bridged Fe(III)-Cu(II) pairs after removal of the two axially coordinated water molecules of the copper atom. The structure of 3 is like that of 2, the main differences being the occurrence of bipy (phen in 2) and two (one in 2) crystallization water molecules. The crystals of 4 diffract poorly but the analysis of the limited set of diffraction data shows a chain structure like that of 1 the most important difference being the fact that elongation axis at the copper atom is defined by the two trans coordinated water molecules. 1 behaves as a ferromagnetic Fe(III)2Cu(II) trinuclear system. A metamagnetic-like behavior is observed for 2 and 3, the value of the critical field (Hc) being ca. 1100 (2) and 900 Oe (3). For H > Hc the ferromagnetic Fe(III)2Cu(II) chains exhibit frequency dependence of the out-of-phase ac susceptibility signal at T < 4.0 K. The magnetic behavior of 4 corresponds to that of a ferromagnetically coupled chain of low spin iron(III) and copper(II) ions with frequency dependence of the out-of-phase susceptibility at T < 3.0 K. Theoretical calculations using methods based on density functional theory (DFT) have been employed to analyze and substantiate the exchange pathways in this family of complexes.  相似文献   

20.
The self-assembly of [Cu(II)(dien)(H(2)O)(2)](2+) and [W(V)(CN)(8)](3-) in aqueous solution leads to the formation (H(3)O){[Cu(II)(dien)](4)[W(V)(CN)(8)]}[W(V)(CN)(8)](2)·6.5H(2)O (1). The crystal structure of 1 consists of an unprecedented {[Cu(II)(dien)](4)[W(V)(CN)(8)]}(5+)(∞) chain of (2,8) topology, nonbridging [W(CN)(8)](3-) anions, and crystallization water molecules. The analysis of magnetic behavior of 1 was performed by the density functional theory (DFT) method and magnetic susceptibility measurements. The DFT broken symmetry approach gave two J(CuW) coupling constants: J(ax) = +2.9 cm(-1) assigned to long and strongly bent W-CN-Cu linkage, and the J(eq) = +1.5 cm(-1) assigned to short and less bent W-CN-Cu linkage, located at the axial and the equatorial positions of square pyramidal Cu(II) centers, respectively, in the hexanuclear {W(2)Cu(4)} chain subunit. The dominance of weak-to-moderate ferromagnetic coupling within the chain was confirmed by magnetic calculations. Zero-field susceptibility of the full chain segment {WCu(4)}(n) was calculated by a semiclassical analytical approach assuming that only one W(V) out of five ? spins of the chain unit WCu(4) is treated as a classical commuting variable. The calculation of the field dependence of the magnetization was performed separately by replacing the same spin with the Ising variable and applying the standard transfer matrix technique. The intermolecular coupling between the chain segments and off-chain [W(CN)(8)](3-) entities was resolved using the mean-field approximation set to be of antiferromagnetic character. The magnetic coupling parameters are compared with those of other low dimensional {Cu(II)-[M(V)(CN)(8)]} systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号