首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Treatment of THF solutions of [(n-Pr)2ATI]MCl (where [(n-Pr)2ATI]- = N-(n-propyl)-2-(n-propylamino)troponiminate; M = Ge and Sn) with sodium azide affords the compounds [(n-Pr)2ATI]MN3 in excellent yield. X-ray analyses revealed that these Ge(II) and Sn(II) compounds feature linear azide moieties and planar heterobicyclic C7N2M ring systems. Germanium and tin atoms adopt a pyramidal geometry. IR spectra of [(n-Pr)2ATI]GeN3 and [(n-Pr)2ATI]SnN3 display a nu asym(N3) band at 2048 and 2039 cm-1, respectively. DFT calculations on the corresponding methyl-substituted species demonstrate that the geometrical and electronic structure of these two species are very similar, and the dominant canonical form of the metal-azide moiety is M-N-N identical to N. The tin system is, as expected, slightly more ionic. A comparative CASSCF/DFT study on the model system H-Sn-N3 illustrates that the DFT approach is viable for the calculation of the structures of these species.  相似文献   

2.
Reaction of Ar'GeGeAr' (1) with an excess of Me3SiN3 gives the non-Kekulé, biradicaloid Ar'Ge(mu-NSiMe3)2GeAr' (3, Ar' = 2,6-Dipp2C6H3, Dipp = 2,6-i-Pr2C6H3) which has a planar Ge2N2Si2 array and pyramidal geometry at the germaniums. DFT calculations for the model MeGe(mu-NSiH3)2GeMe indicate no Ge-Ge bonding and a singlet ground state. The calculated energy difference between the optimized singlet and triplet states is 17.51 kcal/mol.  相似文献   

3.
The electronic influence of unbridged and ansa-bridged ring substituents on a zirconocene center has been studied by means of IR spectroscopic, electrochemical, and computational methods. With respect to IR spectroscopy, the average of the symmetric and asymmetric stretches (nu(CO(av))) of a large series of dicarbonyl complexes (Cp(R))(2)Zr(CO)(2) has been used as a probe of the electronic influence of a cyclopentadienyl ring substituent. For unbridged substituents (Me, Et, Pr(i), Bu(t), SiMe(3)), nu(CO(av)) on a per substituent basis correlates well with Hammett sigma(meta) parameters, thereby indicating that the influence of these substituents is via a simple inductive effect. In contrast, the reduction potentials (E degrees ) of the corresponding dichloride complexes (Cp(R))(2)ZrCl(2) do not correlate well with Hammett sigma(meta) parameters, thereby suggesting that factors other than the substituent inductive effect also influence E degrees. Ansa bridges with single-atom linkers, for example [Me(2)C] and [Me(2)Si], exert a net electron-withdrawing effect, but the effect is diminished upon increasing the length of the bridge. Indeed, with a linker comprising a three-carbon chain, the [CH(2)CH(2)CH(2)] ansa bridge becomes electron-donating. In contrast to the electron-withdrawing effect observed for a single [Me(2)Si] ansa bridge, a pair of vicinal [Me(2)Si] ansa bridges exerts an electron-donating effect relative to that from the single bridge. DFT calculations demonstrate that the electron-withdrawing effect of the [Me(2)C] and [Me(2)Si] ansa-bridges is due to stabilization of the cyclopentadienyl ligand acceptor orbital, which subsequently enhances back-donation from the metal. The calculations also indicate that the electron-donating effect of two vicinal [Me(2)Si] ansa bridges, relative to that of a single bridge, is a result of it enforcing a ligand conformation that reduces back-donation from the metal.  相似文献   

4.
Reaction of SnCl(2).dioxane with 2 equiv of Li(THF)(3)Si(SiMe(3))(3) in hexane afforded the cyclotetrastannane [(Me(3)Si)(3)SiSnCl](4) in reasonable yield. From pentane, the product crystallized as a red-orange disolvate in the P&onemacr; space group (triclinic) with a = 14.735(2) ?, b = 14.976(2) ?, c = 24.066(3) ?, alpha = 76.94 degrees, beta = 76.19 degrees, gamma = 62.11 degrees, V = 4517.5 ?(3), and Z = 2. The Sn(4) ring consisted of a slightly distorted, nonplanar (fold angle = 18.9 degrees ) rectangle with Sn-Sn distances of 2.8054(6), 2.8111(6), 2.9122(6), and 2.9146(6) ?. The pentane molecules were disordered. Selected mono- and dihalogermanes were treated with 1 equiv of Li(THF)(3)Si(SiMe(3))(3) or Li(THF)(2.5)Ge(SiMe(3))(3), affording (Me(3)Si)(3)EGe(CF(3))(3) (E = Si, Ge) and (Me(3)Si)(3)GeGeR(3) (R = Cl, CH(3), C(6)H(5)). Besides the monosubstitution product, the reaction of GeCl(4) with 1 equiv of Li(THF)(2.5)Ge(SiMe(3))(3) also gave a small amount of the linear tetragermane (Me(3)Si)(3)GeGeCl(2)GeCl(2)Ge(SiMe(3))(3). Good yields of the analogous phenyl derivative, (Me(3)Si)(3)GeGePh(2)GePh(2)Ge(SiMe(3))(3), were obtained by treating Ph(2)GeCl(2) with 2 equiv of the lithium-germyl reagent.  相似文献   

5.
The dinuclear mixed-valent complex [(MeC5H4)(dmpe)MnC(2)Mn(dmpe)(C5H4Me)](+)[(eta2-MeC5H4)3Mn](-)[1](+)[2]- (dmpe=1,2-bis(dimethylphosphanyl)ethane) was prepared by the reaction of [Mn(MeC5H4)2] with dmpe and Me(3)SnC[triple chemical bond]CSnMe3. The reactions of [1](+)[2]- with K[PF6] and Na[BPh4] yielded the corresponding anion metathesis products [(MeC5H4)(dmpe)MnC2Mn(dmpe)(C5H4Me)][PF6] ([1][PF6]) and [(MeC5H4)(dmpe)MnC2Mn(dmpe)(C5H4Me)][BPh4] ([1][BPh4]). These mixed-valent species can be reduced to the neutral form by reaction with Na/Hg. The obtained complex [(MeC5H4)(dmpe)MnC2Mn(dmpe)(C5H4Me)] (1) displays a triplet/singlet spin equilibrium in solution and in the solid state, which was additionally studied by DFT calculations. The diamagnetic dicationic species [(MeC5H4)(dmpe)MnC2Mn(dmpe)(C5H4Me)][PF6]2 ([1][PF6]2) was obtained by oxidizing the mixed-valent complex [1][PF6] with one equivalent of [Fe(C5H5)2][PF6]. Both redox processes are fully reversible. The dinuclear compounds were characterized by NMR, IR, UV-visible, and Raman spectroscopy, cyclic voltammetry, and magnetic susceptibility measurements. X-ray diffraction studies were performed on [1][2], [1][PF6], [1][BPh4], and [1][PF6]2.  相似文献   

6.
The first N-donor-stabilized phosphasilene LSi(SiMe(3))═PSiMe(3) (L = PhC(NtBu)(2)) has been synthesized in 87% yield through 1,2-silyl migration of the (Me(3)Si)(2)P-substituted, N-heterocyclic silylene [LSi-P(SiMe(3))(2)]. Remarkably, the latter reacts with dichlorotriphenylphosphorane Ph(3)PCl(2) to give the unprecedented 4π-electron Si(2)P(2)-cycloheterobutadiene [(LSi)(2)P(2)] with two-coordinate phosphorus atoms. The striking molecular structures as well as the (29)Si and (31)P NMR spectroscopic features of both products indicate the presence of zwitterionic Si═P bonds which is also in accordance with results by DFT calculations.  相似文献   

7.
Sui LZ  Yang WW  Yao CJ  Xie HY  Zhong YW 《Inorganic chemistry》2012,51(3):1590-1598
A dimetallic biscyclometalated ruthenium complex, [(bpy)(2)Ru(dpb)Ru(bpy)(2)](2+) (bpy = 2,2'-bipyridine; dpb = 1,4-di-2-pyridylbenzene), with a tris-bidentate coordination mode has been prepared. The electronic properties of this complex were studied by electrochemical and spectroscopic analysis and DFT/TDDFT calculations on both rac and meso isomers. Complex [(bpy)(2)Ru(dpb)Ru(bpy)(2)](2+) has a similar 1,4-benzenedicyclometalated ruthenium (Ru-phenyl-Ru) structural component with a previously reported bis-tridentate complex, [(tpy)Ru(tpb)Ru(tpy)](2+) (tpy = 2,2';6',2″-terpyridine; tpb = 1,2,4,5-tetra-2-pyridylbenzene). The charge delocalizations of these complexes across the Ru-phenyl-Ru array were investigated and compared by studying the corresponding one-electron-oxidized species, generated by chemical oxidation or electrochemical electrolysis, with DFT/TDDFT calculations and spectroscopic and EPR analysis. These studies indicate that both [(bpy)(2)Ru(dpb)Ru(bpy)(2)](3+) and [(tpy)Ru(tpb)Ru(tpy)](3+) are fully delocalized systems. However, the coordination mode of the metal component plays an important role in influencing their electronic properties.  相似文献   

8.
A series of constrained geometry complexes of formula [(eta5-RC2B9H10)CH2(eta1-NMe2)]Al(Me) (R = H, 2a; Me, 2b) was prepared in high yields from the reaction of dicarbollylamine with trimethylaluminum. These complexes showed a unique constrained geometry structure with a central aluminum atom having eta5;eta1-coordination. DFT calculations further elaborate the electronic effect of an amine sidearm on the bonding capability of dicarbollyl ligand with an aluminum atom. It has been noted that dicarbollylamines are effective ancillary ligands for the production of novel constrained geometry complexes of aluminum.  相似文献   

9.
Oxidation of Me(6)M(2) (M = Ge, Sn) and Me(4)Pb with the CB(11)Me(12)(*) radical in alkane solvents produced the insoluble salts Me(3)M(+)CB(11)Me(12)(-), characterized by CP-MAS NMR and EXAFS. The cations interact with methyl groups of CB(11)Me(12)(-) with coordination strength increasing from Pb to Ge. Density functional theory (DFT) calculations for the isolated ion pairs, Me(3)M(+)CB(11)Me(12)(-) (M = Ge, Sn), revealed three isomers with the cation above methyl 2, 7, or 12, and not above a BB edge or a BBB triangle. The interaction has a considerable covalent component, with the cation attempting to perform a backside S(E)2 substitution on the methyl carbon. In a fourth less favorable isomer the cation is near methyl 1, inclined toward methyl 2, and interacts with hydrogens. DFT atomic charge distributions and plots of the electrostatic potential on the surface of spheres centered at the CB(11)H(12)(-) and CB(11)Me(12)(-) icosahedra display the effects of uneven charge distribution within the anion and contradict the common belief that the negative charge of the cage anion is concentrated primarily on the cage boron atoms 7-12; in CB(11)Me(12)(-), roughly half is on the cage carbon and the rest on methyls 7-12.  相似文献   

10.
Novel organosilylated tetrathiafulvalenes (TTFs) possessing Si-H or Si-Si bonds have been synthesised. The crystal structures of several derivatives have been determined by X-ray diffraction, including that of dimeric (Si(2)Me(4))(TTF)(2) () incorporating a diatomic SiMe(2)-SiMe(2) linker. Cyclic voltammetry measurements in all cases show two oxidation waves. DFT calculations were performed to rationalize the absence of an electronic communication between the two TTF moieties of through the disilanyl spacer. The reactivity of the Si-H bond has been exploited to prepare the dinuclear complex [{Ru(CO)(4)}(2){mu-(Me(2)Si)(4)TTF}] (), starting from Ru(3)(CO)(12) and TTF(SiMe(2)H)(4) (). Treatment of with 2 equiv. of PPh(3) or dppm results in selective substitution of a CO ligand trans to a SiMe(2) group to afford mer-[{Ru(PPh(3))(CO)(3)}(2){mu-(Me(2)Si)(4)TTF}] () and mer-[{Ru(CO)(3)}(2)(eta(1)-dppm){mu-(Me(2)Si)(4)TTF}] (). Attempts to transform the Si-H bonds of some TTF(SiMe(2)H)(n) (n = 1, 2) into Si-O functions using stoichiometric amounts of water in the presence of tris(dibenzylideneacetone)dipalladium(0) were unsuccessful. Quantitative cleavage of the C(TTF)-Si bond was observed instead of formation of TTF-based-siloxanes. Essays of catalytic bis-silylation of phenylacetylene with and TTF(SiMe(2)-SiMe(3)) () in the presence of Pd(OAc)(2)/1,1,3,3-tetramethylbutylisocyanide failed. Again, cleavage of the C(TTF)-Si bond was noticed.  相似文献   

11.
The substitution of Mo(III) for Cr(III) in metal-cyanide clusters is demonstrated as an effective means of increasing the strength of the magnetic exchange coupling and introducing magnetic anisotropy. Synthesis of the octahedral complex [(Me(3)tacn)Mo(CN)(3)] (Me(3)tacn = N,N',N"-trimethyl-1,4,7-triazacyclononane) is accomplished with the addition of precisely 3 equiv of LiCN to a solution of [(Me(3)tacn)Mo(CF(3)SO(3))(3)] in DMF. An excess of LiCN prompts formation of a seven-coordinate complex, [(Me(3)tacn)Mo(CN)(4)](1)(-), whereas less LiCN produces multinuclear species such as [(Me(3)tacn)(2)Mo(2)(CN)(5)](1+). In close parallel to reactions previously performed with [(Me(3)tacn)Cr(CN)(3)], assembly reactions between [(Me(3)tacn)Mo(CN)(3)] and [Ni(H(2)O)(6)](2+) or [(cyclam)Ni(H(2)O)(2)](2+) (cyclam = 1,4,8,11-tetraazacyclotetradecane) afford face-centered cubic [(Me(3)tacn)(8)Mo(8)Ni(6)(CN)(24)](12+) and linear [(Me(3)tacn)(2)(cyclam)NiMo(2)(CN)(6)](2+) clusters, respectively. Generation of the former involves a thermally induced cyanide linkage isomerization, which rapidly leads to a low-spin form of the cluster containing diamagnetic Ni(II) centers. The cyclic voltammagram of this species in DMF reveals a sequence of six successive reduction waves spaced approximately 130 mV apart, suggesting class II mixed-valence behavior upon reduction. The magnetic properties of the aforementioned linear cluster are consistent with the expected ferromagnetic coupling and an S = 4 ground state, but otherwise vary slightly with the specific conformation adopted (as influenced by the packing of associated counteranions and solvate molecules in the crystal). Magnetization data indicate an axial zero-field splitting parameter with a magnitude falling in the range [D] = 0.44-0.72 cm(-1), and fits to the magnetic susceptibility data yield exchange coupling constants in the range J = 17.0-17.6 cm(-1). These values represent significant increases over those displayed by the analogous Cr(III)-containing cluster. When perchlorate is used as a counteranion, [(Me(3)tacn)(2)(cyclam)NiMo(2)(CN)(6)](2+) crystallizes from water in a dimeric form with pairs of the linear clusters directly linked via hydrogen bonding. In this case, fitting the magnetic susceptibility data requires use of two coupling constants: one intramolecular with J = 14.9 cm(-1) and another intermolecular with J' = -1.9 cm(-1). Reacting [(Me(3)tacn)Mo(CN)(3)] with a large excess of [(cyclam)Ni(H(2)O)(2)](2+) produces a [(Me(3)tacn)(2)(cyclam)(3)(H(2)O)(2)Ni(3)Mo(2)(CN)(6)](6+) cluster possessing a zigzag structure that is a simple extension of the linear cluster geometry. Its magnetic behavior is consistent with weaker ferromagnetic coupling and an S = 6 ground state. Similar reactions employing an equimolar ratio of reactants afford related one-dimensional chains of formula [(Me(3)tacn)(cyclam)NiMo(CN)(3)](2+). Once again, the ensuing structure depends on the associated counteranions, and the magnetic behavior indicates ferromagnetic coupling. It is hoped that substitutions of the type exemplified here will be of utility in the design of new single-molecule magnets.  相似文献   

12.
The four-coordinate iron complexes, [Fe(III)(pda(2-))(pda(.-))] (1) and [AsPh(4)](2)[Fe(II)(pda(2-))(2)] (2) were synthesized and fully characterized; pda(2-) is the closed-shell ligand N,N'-bis(pentafluorophenyl)-o-phenylenediamido(2-), and pda(.-) represents its one-electron-oxidized pi-radical anion. Single-crystal X-ray diffraction studies of 1 and 2 performed at 100(2) K reveal a distorted tetrahedral coordination environment at the iron centers, as a result of the intramolecular pi-pi interactions between C(6)F(5) rings. The electronic structures of 1 and 2 were unambiguously determined by a combination of (57)Fe M?ssbauer and electronic spectroscopy, magnetic susceptibility measurements, X-ray crystallography, and DFT calculations. Compound 1 contains an intermediate-spin Fe(III) ion (S(Fe)=3/2) strongly antiferromagnetically coupled to a pi-ligand radical (S(R)=1/2) yielding an S(t)=1 ground state. Complex 2 possesses a high-spin Fe(II) center (S(Fe)=2) with two closed-shell dianionic ligands. Complexes 1 and 2 are members of the redox series [Fe(pda)(2)](n) with n=0 for 1 and n=2- for 2. The anion n=1- has been reported previously in the coordination salt [Fe(dad)(3)][Fe(pda)(2)] (3; dad=N,N'-bis(phenyl)-2,3-dimethyl-1,4-diaza-1,3-butadiene). A complicated temperature-dependent electronic structure has been observed for this salt. Here, DFT calculations performed on 3 confirm the previous assignments of spin- and oxidation-states. Thus, [Fe(pda)(2)](n) (n=0, 1-, 2-) constitutes an electron-transfer series, which has also been established by cyclic voltammetry; the mono- and dications (n=1+ and 2+) are also accessible in solution, but have not been further investigated. The (57)Fe M?ssbauer spectra of [Fe(pda)(2)](n) species in 1 and 3 show extremely large quadrupole splitting constants due to addition of the valence and covalence contributions that have been confirmed by DFT calculations.  相似文献   

13.
The reactions of [fac-Re(CO)(3)(bpy)(MeOH)](PF(6)), bpy = 2.2'-bipyridine, with the TCNX ligands (TCNE = tetracyanoethene, TCNQ = 7,7,8,8-tetracyano-p-quinodimethane, and TCNB = 1,2,4,5-tetracyanobenzene) in CH(2)Cl(2) gave very different results. No reaction was observed with TCNB whereas TCNE produced very labile intermediates which converted under mild conditions to structurally characterized [(mu-CN)[fac-Re(CO)(3)(bpy)](2)](PF(6)) with an eclipsed conformation relative to the almost linear Re-CN-Re axis (Re-N(NC) 2.134(8) A, Re-C(CN) 2.098(8) A). With TCNQ, a stable tetranuclear complex [(mu(4)-TCNQ)[Re(CO)(3)(bpy)](4)](BF(4))(4) was obtained. Its structural, electrochemical, and spectroscopic analysis indicates only negligible charge transfer from the rhenium(I) centers to the extremely strong pi acceptor TCNQ. Evidence includes a calculated charge of only -0.09 for coordinated TCNQ according to the empirical structure/charge correlation of Kistenmacher, a high-energy nitrile stretching band nu(CN) = 2235 cm(-1), and unprecedented large anodic shifts >0.7 V of the reduction potentials. DFT calculations were used to confirm and explain the absence of electron delocalization from the electron-rich metals to the TCNQ acceptor bridge. Correspondingly, the X-band and high-frequency (285 GHz) EPR data (g = 2.007) as well as the IR and UV-vis-NIR spectroelectrochemical results (marginal nu(CO) shifts, TCNQ(*-) chromophore bands) support the almost exclusive confinement of the added electron in [(mu(4)-TCNQ)[Re(CO)(3)(bpy)](4)](3+) to the TCNQ bridge.  相似文献   

14.
Eichler JF  Just O  Rees WS 《Inorganic chemistry》2006,45(17):6706-6712
The heteroleptic lithium amide, [(Me3Sn)(Me3Ge)NLi.(Et2O)]2 (2), reacts with MCl(2) (M = Sn, Ge, Pb) to yield the corresponding cubane complexes [M(mu3-NGeMe3)]4 [M = Sn (3), Ge (4), Pb (5)]. In an analogous reaction with SnCl2, the lithium stannylamide, [(Me3Sn)2NLi.(Et2O)]2 (1), produces the mixed-valent Sn congener [Sn(mu3-NSnMe3)]4 (6). All imidocubanes contain both di- and tetravalent group 14 metals that are bridged by N. These structures are comprised of M4N4 (M = Sn, Pb, Ge) cores that possess varying distortion from perfect cube geometry. The Pb derivative (5) exhibits enhanced volatility and vapor-phase integrity.  相似文献   

15.
Synthesis and characterization of a new, highly electron-rich, chelating bis(phosphine), based on the ethanediyl-linked inorganic heterocycle [Me(2)Si(mu-N(t)Bu)(2)P], are reported. Treatment of nickel chloride with this bis(phosphine) afforded square-planar cis-[[Me(2)Si(mu-N(t)Bu)(2)PCH(2)](2)NiCl(2)], which features isometric nickel-chloride (2.2220(8) A) and nickel-phosphorus (2.1572(8) A) bonds. The ligand reacted with cis-[(piperidine)(2)Mo(CO)(4)] to form colorless cis-[[Me(2)Si(mu-N(t)Bu)(2)PCH(2)](2)Mo(CO)(4)], which has distorted octahedral geometry and long Mo-P bonds (2.5461(18) A). Because of its potential applications in hydrogenation catalysis cis-[[Me(2)Si(mu-N(t)()Bu)(2)PCH(2)](2)Rh(COD)]BF(4) was synthesized. This square-planar, cationic rhodium(I) complex, having symmetrical Rh-P (2.250(2) A) and Rh-C (2.305(6) A) bonds, is structurally related to bis(phospholano)- and bis(phosphetano)rhodium species.  相似文献   

16.
Metathesis between [(Me3Si)2CH)(C6H4-2-OMe)P]K and SmI2(THF)2 in THF yields [([Me3Si]2CH)(C6H4-2-OMe)P)2Sm(DME)(THF)] (1), after recrystallization. A similar reaction between [(Me3Si)2CH)(C6H3-2-OMe-3-Me)P]K and SmI2(THF)2 yields [([Me3Si]2CH)(C6H3-2-OMe-3-Me)P)2Sm(DME)].Et2O (2), while reaction between [(Me3Si)2CH)(C6H4-2-CH2NMe2)P]K and either SmI2(THF)2 or YbI2 yields the five-coordinate complex [([Me3Si]2CH)(C6H4-2-CH2NMe2)P)2Sm(THF)] (3) or the solvent-free complex [([Me3Si]2CH)(C6H4-2-CH2NMe2)P)2Yb] (4), respectively. X-ray crystallography shows that complex 2 adopts a distorted cis octahedral geometry, while complex 1 adopts a distorted pentagonal bipyramidal geometry (1, triclinic, P1, a = 11.0625(9) A, b = 15.924(6) A, c = 17.2104(14) A, alpha = 72.327(2) degrees, beta = 83.934(2) degrees, gamma = 79.556(2) degrees, Z = 2; 2, monoclinic, P2(1), a = 13.176(4) A, b = 13.080(4) A, c = 14.546(4) A, beta = 95.363(6) degrees, Z = 2). Complex 3 crystallizes as monomers with a square pyramidal geometry at Sm and exhibits short contacts between Sm and the ipso-carbon atoms of the ligands (3, monoclinic, C2/c, a = 14.9880(17) A, b = 13.0528(15) A, c = 24.330(3) A, beta = 104.507(2) degrees, Z = 4). Whereas preliminary X-ray crystallographic data for 4 indicate a monomeric structure in the solid state, variable-temperature 1H, 13C(1H), 31P(1H), and 171Yb NMR spectroscopies suggest that 4 undergoes an unusual dynamic process in solution, which is ascribed to a monomer-dimer equilibrium in which exchange of the bridging and terminal phosphide groups may be frozen out at low temperature.  相似文献   

17.
Synthesis and characterization of the first manganese(II)-containing heavier thiocarboxylate analogues, [L(Dip) Si(?S)OMnL(Dep) ] (4; L(Dip) =CH[C(Me)N(2,6-iPr(2) C(6) H(3) )](2) , L(Dep) =CH[C(Me)N(2,6-Et(2) C(6) H(3) )](2) ) and [L(Dip) Ge(?S)OMnL(Dep) ] (5) are described. They are accessible through reaction of the silicon and germanium analogues of the respective thiocarboxylic acids [L(Dip) E(?S)OH] (E=Si, Ge) with the β-diketiminato (nacnac) manganese(II) hydride precursor [(L(Dep) Mn)(2) (μ-H)(2) ] (3) in high yield. The first Mn nacnac hydride 3 has been prepared by the reaction of manganese bromide [(L(Dep) Mn)(2) (μ-Br)(2) ] (2) with KBEt(3) H. Compounds 4 and 5 represent the first transition-metal heavier thiocarboxylates with the Si?S and Ge?S functionalities. All new compounds are paramagnetic and were characterized by elemental analysis, IR spectroscopy, MS (EI), and single-crystal X-ray diffraction analyses. Due to the N→E (E=Si, Ge) and E=S→Mn donor-acceptor interaction as well as the carboxylate-like π-electron delocalization within the E(S)O moieties, the E?S double bonds in these compounds are resonance stabilized.  相似文献   

18.
The reactivity of the paramagnetic iridium(II) complex [Ir(II)(ethene)(Me(3)tpa)](2+) (1) (Me(3)tpa=N,N,N-tris(6-methyl-2-pyridylmethyl) amine) towards the diazo compounds ethyl diazoacetate (EDA) and trimethylsilyldiazomethane (TMSDM) was investigated. The reaction with EDA gave rise to selective C--C bond formation, most likely through radical coupling of the Ir-carbenoid radical species [Ir(III){CH(.)(COOEt)}(MeCN)(Me(3)tpa)](2+) (7) and (the MeCN adduct of) 1, to give the tetracationic dinuclear complex [(MeCN)(Me(3)tpa)Ir(III){CH(COOEt)CH(2)CH(2)}Ir(III)(MeCN)(Me(3)tpa)](2+) (4). The analogous reaction with TMSDM leads to the mononuclear dicationic species [Ir(III){CH(2)(SiMe(3))}(MeCN)(Me(3)tpa)](2+) (11). This reaction probably involves a hydrogen-atom abstraction from TMSDM by the intermediate Ir-carbenoid radical species [Ir(III){CH(.)(SiMe(3))}(MeCN)(Me(3)tpa)](2+) (10). DFT calculations support pathways proceeding via these Ir-carbenoid radicals. The carbenoid-radical species are actually carbon-centered ligand radicals, with an electronic structure best described as one-electron-reduced Fischer-type carbenes. To our knowledge, this paper represents the first reactivity study of a mononuclear Ir(II) species towards diazo compounds.  相似文献   

19.
The electronic structures of the highly air-sensitive intermediates (N[caret]N) (C(5)Me(5))Rh, (N[caret]N = 2,2'-bipyridine (bpy), 2,2'-bipyrimidine (bpym), 2,2'-bipyrazine (bpz) and 3,3'-bipyridazine (bpdz)) of hydride transfer catalysis schemes were studied through resonance Raman (rR) spectroscopy and through EPR of the reduced forms [(N[caret]N) (C(5)Me(5))Rh](.-). The rR results are compatible with a predominant MLCT character of the lowest excited states [ (N[caret]N) (C(5)Me(5))Rh]*, and the EPR spectra of the reduced states reveal the presence of anion radical ligands, (N[caret]N) (.-), coordinated by unusually electron rich rhodium(i) centres. The experimental results, including the assignments of electronic transitions, are supported by DFT calculations for the model compounds [(N[caret]N)(C(5)H(5))Rh](o)/(.-), (N[caret]N) = bpy or bpym. The calculations confirm a significant but not complete mixing of metal and ligand orbitals in the lowest unoccupied MO which still retains about 3/4 pi* (N[caret]N) character. DFT calculations on (bpy)(C(5)H(5))M and [(bpy)(C(5)H(5))ClM](+), M = Co, Rh, Ir, agree with the experimental results such as the differences between the homologues, especially the different LUMO characters of the precursor cations in the case of Co-->d(M)) and Rh or Ir (-->pi*(bpy)).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号