首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this paper is to construct a class of orthogonal integrators for stochastic differential equations (SDEs). The family of SDEs with orthogonal solutions is univocally characterized. For this, a class of orthogonal integrators is introduced by imposing constraints to Runge–Kutta (RK) matrices and weights of the standard stochastic RK schemes.The performance of the method is illustrated by means of numerical simulations.  相似文献   

2.
An approach for the construction of A-stable high order explicit strong schemes for stochastic differential equations (SDEs) with additive noise is proposed. We prove that such schemes also have the dynamical property that we call Random A-stability (RA-stability), which ensures that, for linear equations with stationary solutions, the numerical scheme has a random attractor that converges to the exact one as the step size decreases. Basically, the proposed integrators are obtained by splitting, at each time step, the solution of the original equation into two parts: the solution of a linear ordinary differential equation plus the solution of an auxiliary SDE. The first one is solved by the Local Linearization scheme in such a way that A-stability is guaranteed, while the second one is approximated by any extant scheme, preferably an explicit one that yields high order of convergence with low computational cost. Numerical integrators constructed in this way are called High Order Local Linearization (HOLL) methods. Various efficient HOLL schemes are elaborated in detail, and their performance is illustrated through computer simulations. Furthermore, mean-square convergence of the introduced methods is studied.  相似文献   

3.
Metropolized integrators for ergodic stochastic differential equations (SDEs) are proposed that (1) are ergodic with respect to the (known) equilibrium distribution of the SDEs and (2) approximate pathwise the solutions of the SDEs on finite‐time intervals. Both these properties are demonstrated in the paper, and precise strong error estimates are obtained. It is also shown that the Metropolized integrator retains these properties even in situations where the drift in the SDE is nonglobally Lipschitz, and vanilla explicit integrators for SDEs typically become unstable and fail to be ergodic. © 2009 Wiley Periodicals, Inc.  相似文献   

4.
The ergodic properties of SDEs, and various time discretizations for SDEs, are studied. The ergodicity of SDEs is established by using techniques from the theory of Markov chains on general state spaces, such as that expounded by Meyn–Tweedie. Application of these Markov chain results leads to straightforward proofs of geometric ergodicity for a variety of SDEs, including problems with degenerate noise and for problems with locally Lipschitz vector fields. Applications where this theory can be usefully applied include damped-driven Hamiltonian problems (the Langevin equation), the Lorenz equation with degenerate noise and gradient systems.The same Markov chain theory is then used to study time-discrete approximations of these SDEs. The two primary ingredients for ergodicity are a minorization condition and a Lyapunov condition. It is shown that the minorization condition is robust under approximation. For globally Lipschitz vector fields this is also true of the Lyapunov condition. However in the locally Lipschitz case the Lyapunov condition fails for explicit methods such as Euler–Maruyama; for pathwise approximations it is, in general, only inherited by specially constructed implicit discretizations. Examples of such discretization based on backward Euler methods are given, and approximation of the Langevin equation studied in some detail.  相似文献   

5.
The aim of this paper is to derive a numerical scheme for solving stochastic differential equations (SDEs) via Wong-Zakai approximation. One of the most important methods for solving SDEs is Milstein method, but this method is not so popular because the cost of simulating the double stochastic integrals is high. For overcoming this complexity, we present an implicit Milstein scheme based on Wong-Zakai approximation by approximating the Brownian motion with its truncated Haar expansion. The main advantages of this method lie in the fact that it preserves the convergence order and also stability region of the Milstein method while its simulation is much easier than Milstein scheme. We show the convergence rate of the method by some numerical examples.  相似文献   

6.
In this paper, we consider a class of explicit exponential integrators that includes as special cases the explicit exponential Runge–Kutta and exponential Adams–Bashforth methods. The additional freedom in the choice of the numerical schemes allows, in an easy manner, the construction of methods of arbitrarily high order with good stability properties. We provide a convergence analysis for abstract evolution equations in Banach spaces including semilinear parabolic initial-boundary value problems and spatial discretizations thereof. From this analysis, we deduce order conditions which in turn form the basis for the construction of new schemes. Our convergence results are illustrated by numerical examples. AMS subject classification (2000) 65L05, 65L06, 65M12, 65J10  相似文献   

7.
For stochastic differential equations (SDEs) with a superlinearly growing and globally one-sided Lipschitz continuous drift coefficient, the classical explicit Euler scheme fails to converge strongly to the exact solution. Recently, an explicit strongly convergent numerical scheme, called the tamed Euler method, has been proposed in [8] for such SDEs. Motivated by their work, we here introduce a tamed version of the Milstein scheme for SDEs with commutative noise. The proposed method is also explicit and easily implementable, but achieves higher strong convergence order than the tamed Euler method does. In recovering the strong convergence order one of the new method, new difficulties arise and kind of a bootstrap argument is developed to overcome them. Finally, an illustrative example confirms the computational efficiency of the tamed Milstein method compared to the tamed Euler method.  相似文献   

8.
In this paper we propose a new numerical method for solving stochastic differential equations (SDEs). As an application of this method we propose an explicit numerical scheme for a super linear SDE for which the usual Euler scheme diverges.  相似文献   

9.
We construct a non-standard finite difference numerical scheme to approximate stochastic differential equations (SDEs) using the idea of weighed step introduced by R.E. Mickens. We prove the strong convergence of our scheme under locally Lipschitz conditions of a SDE and linear growth condition. We prove the preservation of domain invariance by our scheme under a minimal condition depending on a discretization parameter and unconditionally for the expectation of the approximate solution. The results are illustrated through the geometric Brownian motion. The new scheme shows a greater behaviour compared with the Euler–Maruyama scheme and balanced implicit methods which are widely used in the literature and applications.  相似文献   

10.
We investigate the properties of dissipative full discretizations for the equations of motion associated with models of flow and radiative transport inside stars. We derive dissipative space discretizations and demonstrate that together with specially adapted total-variation-diminishing (TVD) or strongly stable Runge-Kutta time discretizations with adaptive step-size control this yields reliable and efficient integrators for the underlying high-dimensional nonlinear evolution equations. For the most general problem class, fully implicit SDIRK methods are demonstrated to be competitive when compared to popular explicit Runge-Kutta schemes as the additional effort for the solution of the associated nonlinear equations is compensated by the larger step-sizes admissible for strong stability and dissipativity. For the parameter regime associated with semiconvection we can use partitioned IMEX Runge-Kutta schemes, where the solution of the implicit part can be reduced to the solution of an elliptic problem. This yields a significant gain in performance as compared to either fully implicit or explicit time integrators. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
《随机分析与应用》2013,31(5):1133-1140
Abstract

The numerical methods on stochastic differential equations (SDEs) have been well established. There are several papers that study the numerical stability of SDEs with respect to sample paths or moments. In this paper, we study the stability in distribution of numerical solution of SDEs.  相似文献   

12.
We introduce SDELab, a package for solving stochastic differential equations (SDEs) within MATLAB. SDELab features explicit and implicit integrators for a general class of Itô and Stratonovich SDEs, including Milstein's method, sophisticated algorithms for iterated stochastic integrals, and flexible plotting facilities.  相似文献   

13.
We present a new class of efficient time integrators for solving linear evolution multidimensional problems of second‐order in time named Fractional Step Runge‐Kutta‐Nyström methods (FSRKN). We show that these methods, combined with suitable spliting of the space differential operator and adequate space discretizations provide important advantages from the computational point of view, mainly parallelization facilities and reduction of computational complexity. In this article, we study in detail the consistency of such methods and we introduce an extension of the concept of R‐stability for Runge‐Kutta‐Nyström methods. We also present some numerical experiments showing the unconditional convergence of a third order method of this class applied to resolve one Initial Boundary Value Problem of second order in time. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 597–620, 2012  相似文献   

14.
The multi-frequency and multi-dimensional adapted Runge-Kutta-Nyström (ARKN) integrators, and multi-frequency and multi-dimensional extended Runge-Kutta-Nyström(ERKN) integrators have been developed to efficiently solve multi-frequency oscillatory Hamiltonian systems. The aim of this paper is to analyze and derive high-order symplectic and symmetric composition methods based on the ARKN integrators and ERKN integrators. We first consider the symplecticity conditions for the multi-frequency and multi-dimensional ARKN integrators. We then analyze the symplecticity of the adjoint integrators of the multi-frequency and multi-dimensional symplectic ARKN integrators and ERKN integrators, respectively. On the basis of the theoretical analysis and by using the idea of composition methods, we derive and propose four new high-order symplectic and symmetric methods for the multi-frequency oscillatory Hamiltonian systems. The numerical results accompanied in this paper quantitatively show the advantage and efficiency of the proposed high-order symplectic and symmetric methods.  相似文献   

15.
We consider the approximation of trigonometric operator functions that arise in the numerical solution of wave equations by trigonometric integrators. It is well known that Krylov subspace methods for matrix functions without exponential decay show superlinear convergence behavior if the number of steps is larger than the norm of the operator. Thus, Krylov approximations may fail to converge for unbounded operators. In this paper, we propose and analyze a rational Krylov subspace method which converges not only for finite element or finite difference approximations to differential operators but even for abstract, unbounded operators. In contrast to standard Krylov methods, the convergence will be independent of the norm of the operator and thus of its spatial discretization. We will discuss efficient implementations for finite element discretizations and illustrate our analysis with numerical experiments. AMS subject classification (2000)  65F10, 65L60, 65M60, 65N22  相似文献   

16.
The strong rate of convergence for the Euler–Maruyama scheme of stochastic differential equations (SDEs) driven by a Brownian motion with Hölder continuous diffusion coefficient or irregular drift coefficient have been widely studied. In the case of irregular diffusion coefficient, however, there are few studies. In this article, under Le Gall's condition on the diffusion coefficient, which leads to conclude the pathwise uniqueness for SDEs, we provide the same result on the strong rate of convergence as in the case of 1/2-Hölder continuous diffusion coefficient. The idea of the proof is to use a version of Avikainen's inequality. As an application, we introduce a numerical scheme for SDEs with local time.  相似文献   

17.
This paper concerns the stochastic Runge-Kutta (SRK) methods with high strong order for solving the Stratonovich stochastic differential equations (SDEs) with scalar noise. Firstly, the new SRK methods with strong order 1.5 or 2.0 for the Stratonovich SDEs with scalar noise are constructed by applying colored rooted tree analysis and the theorem of order conditions for SRK methods proposed by Rößler (SIAM J. Numer. Anal. 48(3), 922–952, 2010). Secondly, a specific SRK method with strong order 2.0 for the Stratonovich SDEs whose drift term vanishes is proposed. And another specific SRK method with strong order 1.5 for the Stratonovich SDEs whose drift and diffusion terms satisfy the commutativity condition is proposed. The two specific SRK methods need only to use one random variable and do not need to simulate the multiple Stratonovich stochastic integrals. Finally, the numerical results show that performance of our methods is better than those of well-known SRK methods with strong order 1.0 or 1.5.  相似文献   

18.
The exponential stability of numerical methods to stochastic differential equations (SDEs) has been widely studied. In contrast, there are relatively few works on polynomial stability of numerical methods. In this letter, we address the question of reproducing the polynomial decay of a class of SDEs using the Euler–Maruyama method and the backward Euler–Maruyama method. The key technical contribution is based on various estimates involving the gamma function.  相似文献   

19.
The paper studies the influence of the time discretizations when simulating some phenomena involving more than one solitary wave. Taking the KdV equation as a case study, we obtain some conditions on the numerical method in order to get a more correct simulation of multi-soliton solutions. They are related to the evolution of the conserved quantities of the problem through the numerical integration. It is shown that, when approximating N-solitons, a method that preserves N invariants of the problem shows a better time propagation of the error than that of a general scheme. As a consequence of this, the simulation of some physical parameters that characterize the waves is more suitable when using conservative integrators. We also show how these results can be extended to the approximation to multi-solitons of any equation of the KdV hierarchy and, more generally, other integrable equations.  相似文献   

20.
In this paper we discuss two-stage Miistein methods for solving Ito stochastic differential equations (SDEs). Six fully explicit methods (TSM 1 -- TSM 6) are given in this paper. Their order of strong convergence is proved. The stability properties and numerical results show the effectiveness of these methods in the pathwise approximation of Ito SDEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号