首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于介质阻挡放电等离子体体积力气动激励机理,数值研究了两种等离子体流动控制方案对螺旋桨桨径根部处于负攻角工况下叶素气动性能的改善效果.结果显示,激励器布置在下翼面时等离子体体积力大于其布置在叶素前后缘时的情况;激励器布置在下翼面时,可抑制流动分离,使得螺旋桨桨根部位叶素产生更大的负拉力,但会减小螺旋桨的扭矩;激励器布置在前后缘时,会使螺旋桨根部叶素拉力增大,提高螺旋桨总拉力,但不能抑制流动分离,所以会增大螺旋桨的扭矩.  相似文献   

2.
The flow characteristics of a corona jet, which is produced from a single needle electrode positioned at the centerline of a circular tube fitted with a grounded stainless-steel nozzle at one end of the tube, is experimentally evaluated. Six nozzles with two diameter ratios and three taper angles are evaluated for their effectiveness in accelerating the jet produced by corona discharge with positive polarity. To determine the maximum jet velocity and volume flow rate, experiments have been conducted at a voltage ranging from corona onset (5 kV) to sparkover (approximately 12.5 kV) at an increment of 2.5 kV. The results show that the jet velocity increases with the applied voltage. The maximum velocity occurs at the center line but its value decreases as the jet expands downstream. In addition, the results show that a nozzle with a smaller diameter ratio does not always perform the best in accelerating the flow or producing the maximum volume flow rate. The nozzle's taper angle further accentuates the result produced by the diameter ratio. The implications from the present results for actual applications are provided.  相似文献   

3.
In this paper, the effects of inlet air RH and air flow rate on positive and negative corona discharges in a corona-needle charger have been experimentally studied and discussed. Its corona discharge characterizations in terms of current-to-voltage relationships of the corona-needle charger on the effects of inlet air RH and air flow rate were evaluated at applied corona voltages between 0 and 3.1 kV, an air flow rates between 5 and 15 L/min, a relative humidity between 20 and 90%, and an operating pressure of about 101.3 kPa. Experimental results were shown that discharge current is strongly affected by the RH level of the inlet air. The positive discharge current was found to be decreased with increasing RH value at RH values below 60% and increased with increasing RH value at RH value above 60% in the same corona voltage. The negative discharge current was found to be stable with increasing RH value at RH values below 40% and increased with increasing RH value at RH value above 40% in the same corona voltage. For the air flow rate effects, the positive discharge current was found to slightly decrease when the air flow rate increased at RH value below 90% and to increase with the air flow rate at RH value of 90%. For the negative corona, the discharge current was also found to monotonically decrease when the air flow rate increased.  相似文献   

4.
为了实现大气压环境下稳定的辉光放电,设计了一种新型的针-柱电极结构放电装置。采用针尖直径为56.4 μm的不锈钢针作为放电阴极,直径为4 mm的紫铜圆柱作为放电阳极,两者通过精密机械结构保持平行。当针-柱之间间距为2 mm、镇流电阻10 MΩ,放电电阻10 MΩ,测试电阻1 kΩ、放电电压-2 740 V、大气压环境、室温、无外部通入气流时,针-柱之间实现了稳定的辉光放电。示波器存储的放电波形和数码相机记录的放电图像验证了从电晕放电到辉光放电,再到火花放电的三种放电模式。该针-柱结构易于用MEMS工艺加工制作,可应用于便携式分析仪器中作为离子源使用。  相似文献   

5.
This paper deals with the DC monopolar corona discharge in wire-to-plane geometry under variable humid air conditions. The classical formulas of Townsend commonly used for the current–voltage characteristics were used to determine the various corona parameters for the both polarities of the corona discharge. A circular biased probe has been adapted to the plane and is used to measure the ground plane current density and electric field during the monopolar corona discharge. A new approach to the problem of corona discharge in transmission system has been described in this paper. The effect of varying the humidity and wires diameter is also investigated. The values of the electric field and the current density are maximum beneath the corona wire and decrease when moving away from them and the current–voltage characteristics follow the quadratic Townsend's law. The experimental results show that the monopolar corona discharge is strongly affected by the air humidity. The current density and the electric field are measured and compared with the computed values. The agreement between the calculated values and those obtained experimentally is satisfactory. The per unit electric field and current density are also represented by a unique function.  相似文献   

6.
利用多针电晕增强放电装置,在无气流和存在高速气流的情况下都得到了稳定的大气压辉光.通过纪录发光图片、电流-电压波形和伏安特性曲线的方法对影响放电稳定性的因素做了细致地研究,发现了在从电晕放电到辉光放电的过程中存在着过渡阶段,表现为出现带有直流成分的Trichel脉冲.气流速度、极板间距以及针尖锥度和凹坑曲率半径的匹配程度都对放电的稳定性和电流密度有着重要的影响. 关键词: 大气压辉光放电 多针电晕 等离子体  相似文献   

7.
A cylindrical triode charger for unipolar diffusion charging of aerosol particles was designed, constructed, and evaluated. The corona discharge characteristics were studied in this cylindrical triode charger. For the process the current–voltage characteristics were determined, as were the ion number concentration, the nit product, and the mean charge per particle as a function of particle diameter. The discharge and charging currents, and ion number concentration in the charging zone of the charger increased monotonically with corona voltage. The negative corona had a higher current than the positive corona. At the same corona voltage, the ion number concentration in the discharge zone was larger than the charging current for positive and negative coronas, with values of about 197 and 32 times and 645 and 99 times for the ion-driving voltages of 0 and 310 V, respectively. The average ion penetration for positive and negative coronas was 0.64 and 0.19% and 3.62 and 1.93% for the ion-driving voltages of 0 V and 310 V, respectively. The higher flow rate, shorter residence time, gave a lower Nit product. By calculation 14% of charged particles of 10 nm in diameter were lost to the outer cylinder because of the electrostatic field effect. The charger does not use a sheath of air flow along the walls or the perforated screen opening, it has low diffusion and space charge losses due to the short column charging zone, and is a low complexity and inexpensive system. It worked as well as more sophisticated and expensive commercially available chargers.  相似文献   

8.
During a dc corona discharge, the ions' momentum will be transferred to the surrounding neutral molecules, inducing an ionic wind.The characteristics of corona discharge and the induced ionic wind are investigated experimentally and numerically under different polarities using a needle-to-ring electrode configuration.The morphology and mechanism of corona discharge, as well as the characteristics and mechanism of the ionic wind, are different when the needle serves as cathode or anode.Under the different polarities of the applied voltage, the ionic wind velocity has a linear relation with the overvoltage.The ionic wind is stronger but has a smaller active region for positive corona compared to that for negative corona under a similar condition.The involved physics are analyzed by theoretical deduction as well as simulation using a fluid model.The ionic wind of negative corona is mainly affected by negative ions.The discharge channel has a dispersed feature due to the dispersed field, and therefore the ionic wind has a larger active area.The ionic wind of positive corona is mainly affected by positive ions.The discharge develops in streamer mode, leading to a stronger ionic wind but a lower active area.  相似文献   

9.
《Journal of Electrostatics》2005,63(6-10):609-614
In order to understand electrostatic discharges occurring between a grounded electrode and a space charge cloud, the positive discharges were experimentally caused by negatively charged particles cloud. The discharges were initiated by locating a grounded sphere electrode at the inside or outside of the charged powder particles blown by an air flow. The luminous aspect and the discharge current were observed for the grounded sphere electrode with various diameters. Positive streamer corona discharges extended from it. The luminous aspect, peak value of the discharge current and the interval of the discharge significantly depend on the diameter of the grounded sphere electrode as well as its position.  相似文献   

10.
In this work we are going to perform a simulation of a positive corona discharge in nitrogen gas, using two different asymmetric capacitor geometries. We intend to increase the highest ion wind velocities and electrostatic propulsion forces on the considered structures. In our model, the used positive ion source is a small diameter wire, which generates a positive corona discharge directed to the ground electrodes. By applying the fluid dynamic and electrostatic theories, all hydrodynamic and electrostatic forces will be computed in an attempt to demonstrate the greater performance of the new developed geometries.  相似文献   

11.
In the paper, the influences of water flux on both discharge current and onset voltage were studied. Both charging and capturing particles of atomizing corona discharges were investigated when the magnetic field was used or not. The charge number of droplets and their sizes were calculated after some parameters were measured by Millikan oil drop instrument. In addition, the capturing ability of atomizing corona discharge pre-charger with magnetic field was compared with the traditional pre-charger. Eventually, the charging mechanism of atomizing corona discharge with magnetic field was analyzed through the above-mentioned experimentation and comparison. The result shows that the smallest onset voltage will appear with water flow increase in the atomizing corona discharge, and that the ion concentration between electrodes is the highest in the atomizing corona discharge charger with magnetic field than any other pre-charger, which is conducive for charging dust particles. Hence the new pre-charging technique is promising for capturing fine aerosol particles in electrostatic precipitators.  相似文献   

12.
Non-intrusive two-phase fluid pumping based on an electrohydrodynamically (EHD) induced flow phenomenon with free liquid surface exposed to gas-phase corona discharges is experimentally investigated. Dielectric liquid flow generated near a corona discharge electrode progresses toward an inclined plate electrode, and then climbs up the surface against the gravitational force for an air-wave (AW) type EHD pump. The AW type EHD pump is operated on ionic wind field along the inclined plate electrode. The pumping performance of time-averaged liquid flow rate and the liquid-phase flow motion are characterized. The liquid flow characteristics related to a dimensionless parameter of corona discharge fields are presented.  相似文献   

13.
Atmospheric pressure needle-to-plane discharges have been explored experimentally in electrode gaps from 100 μm to 400 μm. These discharges can be self-sustained and follow the form of existing empirical formulae describing the current-voltage characteristics of corona discharge. The discharge can also be self-sustained by its lower sustaining voltage applied between the two electrodes once it is ignited by the initial high output voltage from power supply. The experiments of charging aerosol particles by the self-sustaining discharge operating with a lowered power have shown that for particles with a diameter of 46 nm, the charging efficiency attained 43.6%.  相似文献   

14.
This study is aimed at investigating the possibility of pressure variation near the surface of a body placed in a supersonic flow as a model of an aerofoil or the nose of an aircraft by organizing a surface gas discharge in a magnetic field transverse to the flow. The flow parameters and pressure are mainly affected by the ponderomotive Lorentz force acting on the gas in the direction orthogonal to the direction of the organized discharge current and leading to the removal or compression of the gas at the surface of the body and, hence, a variation of pressure. Experimental data on the visualization of the flow and on the pressure at the surface of the body are considered for various configurations of the current and intensities of the gas discharge and magnetic field; it is demonstrated that such configurations of the current and magnetic field near the surface of the body under investigation can be organized in such a way that the pressure at the front part as well as the upper and lower surfaces of the body under investigation can be increased or decreased, thus changing the aerodynamic drag and the aerofoil lift. Such a magnetohydrodynamic control over aerodynamic parameters of the aircraft can be used during takeoff and landing as well as during steady-state flight and also during the entrance into dense atmospheric layers. This will considerably reduce the thermal load on the surface of the body in the flow.  相似文献   

15.
The I-V characteristics of a negative corona discharge initiated by a multipoint cathode in an argon flow are experimentally studied. It is found that adjustable ballast resistances connected to the corona points provide stable operation and uniform filling of the discharge gap by the plasma.  相似文献   

16.
This paper analyses corona discharge in ambient air with laboratory-scaled wire-to-plate electrostatic precipitator (WPESP). The electric field is behind the electro hydrodynamic (EHD) flow in air. Its measurements provide complementary results for the corona discharge study because the classical theory based on the current and voltage data is unsatisfactory. Taking into account the dynamic air flow velocity is perpendicular to the active wires, measurement method of the positive and negative DC corona current density and electric field, has been introduced. It has been shown also that the dynamic air flow velocity modifies the current density and the electric field distributions on the planes surfaces of the WPESP.  相似文献   

17.
A new unipolar charger for aerosol nanoparticles has been developed. In this twin Hewitt charger two corona discharge zones are connected by a charging zone where the nanoparticle aerosol flows. Ions move into the charging zone alternating from each corona discharging zone by means of a square-wave voltage. The operation parameters of the device have been experimentally investigated at standard conditions with the goal to optimize the extrinsic charging efficiency in N2 carrier gas. It has been found that there exists an optimal length of the charging channel for each gas flow rate through the charger which minimizes losses of charged particles and at the same time having a sufficient large n iont-product. Extrinsic charging efficiencies of some 30% for particles with a diameter of 10 nm are obtained.  相似文献   

18.
This project presents the results of investigation of current/voltage characteristics of brush type discharge electrodes (BTDE) in tube type electrostatic precipitators and the effect on operation. Experimental investigations were conducted with discharge electrodes of different wire diameter and different brush diameter. The effect of electrode geometry on current/voltage behavior was recorded. Corona current with brush type discharge electrodes was modeled and compared with experimental data. Brush type discharge electrodes produce an enhanced corona current compared with wire type discharge electrodes. Limited enhanced corona has improving effect on collection efficiency. An adjusted correlation was therefore deduced from experimentally obtained current/voltage data with BTDE.  相似文献   

19.
In this study, the corona-needle ionizer was designed, constructed, and characterized. Experimental characterizations of the electrostatic discharge in terms of current–voltage relationships of the corona ionizer, including the effects of discharge electrode cone angle and air flow rate were presented. It was found that the charging current and ion concentration in the charging zone increased monotonically with corona voltage. Conversely, discharge currents decreased with increasing angle of the needle cone. The negative corona was found to have higher current than the positive corona. At higher air flow rates, the ion current and concentration were found to be relatively high for the same corona voltage. The effect of air flow rate was more pronounced than the corona voltage. It was also shown that the ion penetration through the ionizer decreased with increasing corona voltage, and increased with increasing air flow rate. The highest ion penetration through the ionizer of the 10° needle cone angle was found to be about 93.7 and 7.7% for positive and negative coronas, respectively. The highest ion penetration for the needle cone angle of 20° was found to be 96.6 and 6.1% for positive and negative coronas, respectively.  相似文献   

20.
It is shown that the growth of a dense array of chromium microneedles is induced on a field cathode tip interacting with a negative corona discharge in ambient Cr(CO)6 of 1 – 5 × 10?2 Torr. The growth begins with the initiation of a corona discharge surrounding the tip, and it proceeds as long as the discharge is sustained. The needles emit field electrons during the growth, thereby sustaining the discharge, while the discharge lengthens the needles by supplying metallic particles to their tips. The morphological structure of the needles is strongly affected by an external magnetic field, leading us to hypothesize that the needle grow axially as the electron avalanches, originating at the cathode tip, propagate outward from tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号