首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper is devoted to the problem of verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model embracing nonlinear elliptic variational problems is considered in this work. Based on functional type estimates developed on an abstract level, we present a general technology for constructing computable sharp upper bounds for the global error for various particular classes of elliptic problems. Here the global error is understood as a suitable energy type difference between the true and computed solutions. The estimates obtained are completely independent of the numerical technique used to obtain approximate solutions, and are sharp in the sense that they can be, in principle, made as close to the true error as resources of the used computer allow. The latter can be achieved by suitably tuning the auxiliary parameter functions, involved in the proposed upper error bounds, in the course of the calculations.  相似文献   

2.
Solving a nonlinear system of second order boundary value problems   总被引:2,自引:0,他引:2  
In this paper, a method is presented to obtain the analytical and approximate solutions of linear and nonlinear systems of second order boundary value problems. The analytical solution is represented in the form of series in the reproducing kernel space. In the mean time, the approximate solution un(x) is obtained by the n-term intercept of the analytical solution and is proved to converge to the analytical solution. Some numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by the method indicate the method is simple and effective.  相似文献   

3.
We consider an analytic iterative method to approximate the solution of a neutral stochastic functional differential equation. More precisely, we define a sequence of approximate equations and we give sufficient conditions under which the approximate solutions converge with probability one and in pth moment sense, p ? 2, to the solution of the initial equation. We introduce the notion of the Z-algorithm for this iterative method and present some examples to illustrate the theory. Especially, we point out that the well-known Picard method of iterations is a special Z-algorithm.  相似文献   

4.
This article studies a numerical solution method for a special class of continuous time linear programming problems denoted by (SP). We will present an efficient method for finding numerical solutions of (SP). The presented method is a discrete approximation algorithm, however, the main work of computing a numerical solution in our method is only to solve finite linear programming problems by using recurrence relations. By our constructive manner, we provide a computational procedure which would yield an error bound introduced by the numerical approximation. We also demonstrate that the searched approximate solutions weakly converge to an optimal solution. Some numerical examples are given to illustrate the provided procedure.  相似文献   

5.
The computation of the greatest common divisor (GCD) of a set of polynomials has interested the mathematicians for a long time and has attracted a lot of attention in recent years. A challenging problem that arises from several applications, such as control or image and signal processing, is to develop a numerical GCD method that inherently has the potential to work efficiently with sets of several polynomials with inexactly known coefficients. The presented work focuses on: (i) the use of the basic principles of the ERES methodology for calculating the GCD of a set of several polynomials and defining approximate solutions by developing the hybrid implementation of this methodology. (ii) the use of the developed framework for defining the approximate notions for the GCD as a distance problem in a projective space to develop an optimization algorithm for evaluating the strength of different ad-hoc approximations derived from different algorithms. The presented new implementation of ERES is based on the effective combination of symbolic–numeric arithmetic (hybrid arithmetic) and shows interesting computational properties for the approximate GCD problem. Additionally, an efficient implementation of the strength of an approximate GCD is given by exploiting some of the special aspects of the respective distance problem. Finally, the overall performance of the ERES algorithm for computing approximate solutions is discussed.  相似文献   

6.
The cubic B3-spline functions and eigenfunctions are used to obtain the approximate solution for the vibration of cylindrical shells in this paper. Unified computational schemes suited for various types of boundary conditions are formulated here. In comparison with the conventional finite elements method and finite strip method, the main features of the present method are higher accuracy, fewer unknowns, ease in programming, and economy in computer solution. The numerical results are given and compared with other numerical solutions.  相似文献   

7.
The computation of an approximate solution of linear discrete ill-posed problems with contaminated data is delicate due to the possibility of severe error propagation. Tikhonov regularization seeks to reduce the sensitivity of the computed solution to errors in the data by replacing the given ill-posed problem by a nearby problem, whose solution is less sensitive to perturbation. This regularization method requires that a suitable value of the regularization parameter be chosen. Recently, Brezinski et al. (Numer Algorithms 49, 2008) described new approaches to estimate the error in approximate solutions of linear systems of equations and applied these estimates to determine a suitable value of the regularization parameter in Tikhonov regularization when the approximate solution is computed with the aid of the singular value decomposition. This paper discusses applications of these and related error estimates to the solution of large-scale ill-posed problems when approximate solutions are computed by Tikhonov regularization based on partial Lanczos bidiagonalization of the matrix. The connection between partial Lanczos bidiagonalization and Gauss quadrature is utilized to determine inexpensive bounds for a family of error estimates. In memory of Gene H. Golub. This work was supported by MIUR under the PRIN grant no. 2006017542-003 and by the University of Cagliari.  相似文献   

8.
In this study, we will obtain the approximate solutions of the HIV infection model of CD4+T by developing the Bessel collocation method. This model corresponds to a class of nonlinear ordinary differential equation systems. Proposed scheme consists of reducing the problem to a nonlinear algebraic equation system by expanding the approximate solutions by means of the Bessel polynomials with unknown coefficients. The unknown coefficients of the Bessel polynomials are computed using the matrix operations of derivatives together with the collocation method. The reliability and efficiency of the proposed approach are demonstrated in the different time intervals by a numerical example. All computations have been made with the aid of a computer code written in Maple 9.  相似文献   

9.
The paper is devoted to verification of accuracy of approximate solutions obtained in computer simulations. This problem is strongly related to a posteriori error estimates, giving computable bounds for computational errors and detecting zones in the solution domain where such errors are too large and certain mesh refinements should be performed. A mathematical model consisting of a linear elliptic (reaction-diffusion) equation with a mixed Dirichlet/Neumann/Robin boundary condition is considered in this work. On the base of this model, we present simple technologies for straightforward constructing computable upper and lower bounds for the error, which is understood as the difference between the exact solution of the model and its approximation measured in the corresponding energy norm. The estimates obtained are completely independent of the numerical technique used to obtain approximate solutions and are “flexible” in the sense that they can be, in principle, made as close to the true error as the resources of the used computer allow. This work was supported by the Academy Research Fellowship No. 208628 from the Academy of Finland.  相似文献   

10.
In the present paper, we use subgradient projection algorithms for solving convex feasibility problems. We show that almost all iterates, generated by a subgradient projection algorithm in a Hilbert space, are approximate solutions. Moreover, we obtain an estimate of the number of iterates which are not approximate solutions. In a finite-dimensional case, we study the behavior of the subgradient projection algorithm in the presence of computational errors. Provided computational errors are bounded, we prove that our subgradient projection algorithm generates a good approximate solution after a certain number of iterates.  相似文献   

11.
In this paper, we conduct a goal-oriented a posteriori analysis for the error in a quantity of interest computed from a cell-centered finite volume scheme for a semilinear elliptic problem. The a posteriori error analysis is based on variational analysis, residual errors and the adjoint problem. To carry out the analysis, we use an equivalence between the cell-centered finite volume scheme and a mixed finite element method with special choice of quadrature.  相似文献   

12.
The multicovering problem can be expressed as: Minimize CX subject to AX ⩾, b, X ϵ {0, 1}, where A is a zero-one matrix and b is a vector of positive integers. This mathematical model has many applications to scheduling and location problems. Large examples of such problems arise in industrial, commercial and military settings, and their size frequently exceeds the limits of computational tractability. For this important problem, we examine a variety of simple heuristic approaches which can be applied when optimal solutions are not available. The approximate solutions thus generated are used to construct confidence intervals for the unknown value of the optimal solution. A large-scale computational study for randomly generated problmes suggests that these intervals are both very narrow and very likely to contain the optimal solution value. A study of 10 very large real-world problems further supports the success of our methodology and the quality of the approximate solutions found.  相似文献   

13.
We deal with a posteriori error control of discontinuous Galerkin approximations for linear boundary value problems. The computational error is estimated in the framework of the Dual Weighted Residual method (DWR) for goal-oriented error estimation which requires to solve an additional (adjoint) problem. We focus on the control of the algebraic errors arising from iterative solutions of algebraic systems corresponding to both the primal and adjoint problems. Moreover, we present two different reconstruction techniques allowing an efficient evaluation of the error estimators. Finally, we propose a complex algorithm which controls discretization and algebraic errors and drives the adaptation of the mesh in the close to optimal manner with respect to the given quantity of interest.  相似文献   

14.
In a Hilbert space, we study the convergence of the subgradient method to a solution of a variational inequality, under the presence of computational errors. Most results known in the literature establish convergence of optimization algorithms, when computational errors are summable. In the present paper, the convergence of the subgradient method for solving variational inequalities is established for nonsummable computational errors. We show that the subgradient method generates a good approximate solution, if the sequence of computational errors is bounded from above by a constant.  相似文献   

15.
Terminal-state tracking optimal control problems for linear parabolic equations are studied in this paper. The control objectives are to track a desired terminal state and the control is of the distributed type. Explicit solution formulae for the optimal control problems are derived in the form of eigen series. Pointwise-in-time L2 norm estimates for the optimal solutions are obtained and approximate controllability results are established. Exact controllability is shown when the target state vanishes on the boundary of the spatial domain. One-dimensional computational results are presented which illustrate the terminal-state tracking properties for the solutions expressed by the series formulae.  相似文献   

16.
We consider the solution of large-scale Lyapunov and Stein equations. For Stein equations, the well-known Smith method will be adapted, with $A_k = A^{2^k}$ not explicitly computed but in the recursive form $A_k = A_{k-1}^{2}$ , and the fast growing but diminishing components in the approximate solutions truncated. Lyapunov equations will be first treated with the Cayley transform before the Smith method is applied. For algebraic equations with numerically low-ranked solutions of dimension n, the resulting algorithms are of an efficient O(n) computational complexity and memory requirement per iteration and converge essentially quadratically. An application in the estimation of a lower bound of the condition number for continuous-time algebraic Riccati equations is presented, as well as some numerical results.  相似文献   

17.
In a finite-dimensional Euclidean space, we study the convergence of a proximal point method to a solution of the inclusion induced by a maximal monotone operator, under the presence of computational errors. Most results known in the literature establish the convergence of proximal point methods, when computational errors are summable. In the present paper, the convergence of the method is established for nonsummable computational errors. We show that the proximal point method generates a good approximate solution, if the sequence of computational errors is bounded from above by a constant.  相似文献   

18.
We introduce a flexible, open source implementation that provides the optimal sensitivity of solutions of nonlinear programming (NLP) problems, and is adapted to a fast solver based on a barrier NLP method. The program, called sIPOPT evaluates the sensitivity of the Karush?CKuhn?CTucker (KKT) system with respect to perturbation parameters. It is paired with the open-source IPOPT NLP solver and reuses matrix factorizations from the solver, so that sensitivities to parameters are determined with minimal computational cost. Aside from estimating sensitivities for parametric NLPs, the program provides approximate NLP solutions for nonlinear model predictive control and state estimation. These are enabled by pre-factored KKT matrices and a fix-relax strategy based on Schur complements. In addition, reduced Hessians are obtained at minimal cost and these are particularly effective to approximate covariance matrices in parameter and state estimation problems. The sIPOPT program is demonstrated on four case studies to illustrate all of these features.  相似文献   

19.
We study the local convergence of a proximal point method in a metric space under the presence of computational errors. We show that the proximal point method generates a good approximate solution if the sequence of computational errors is bounded from above by some constant. The principle assumption is a local error bound condition which relates the growth of an objective function to the distance to the set of minimizers introduced by Hager and Zhang (SIAM J Control Optim 46:1683–1704, 2007).  相似文献   

20.
The conjugate gradient method is one of the most popular iterative methods for computing approximate solutions of linear systems of equations with a symmetric positive definite matrix A. It is generally desirable to terminate the iterations as soon as a sufficiently accurate approximate solution has been computed. This paper discusses known and new methods for computing bounds or estimates of the A-norm of the error in the approximate solutions generated by the conjugate gradient method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号