首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assembly lines are traditional and still attractive means of mass and large-scale series production. Since the early times of Henry Ford several developments took place which changed assembly lines from strictly paced and straight single-model lines to more flexible systems including, among others, lines with parallel work stations or tasks, customer-oriented mixed-model and multi-model lines, U-shaped lines as well as unpaced lines with intermediate buffers.In any case, an important decision problem, called assembly line balancing problem, arises and has to be solved when (re-) configuring an assembly line. It consists of distributing the total workload for manufacturing any unit of the product to be assembled among the work stations along the line.Assembly line balancing research has traditionally focused on the simple assembly line balancing problem (SALBP) which has some restricting assumptions. Recently, a lot of research work has been done in order to describe and solve more realistic generalized problems (GALBP). In this paper, we survey the developments in GALBP research.  相似文献   

2.
Assembly line balancing problems (ALBPs) arise whenever an assembly line is configured, redesigned or adjusted. An ALBP consists of distributing the total workload for manufacturing products among the work stations along the line. On the one hand, research has focussed on developing effective and fast solution methods for exactly solving the simple assembly line balancing problem (SALBP). On the other hand, a number of real-world extensions of SALBP have been introduced but solved with straight-forward and simple heuristics in many cases. Therefore, there is a lack of procedures for exactly solving such generalized ALBP.In this paper, we show how to extend the well-known solution procedure Salome [Scholl, A., Klein, R., 1997. Salome: A bidirectional branch-and-bound procedure for assembly line balancing. Informs J. Comput. 9 319–334], which is able to solve even large SALBP instances in a very effective manner, to a problem extension with different types of assignment restrictions (called ARALBP). The extended procedure, referred to as Absalom, employs a favorable branching scheme, an arsenal of bounding rules and a variety of logical tests using ideas from constraint programming.Computational experiments show that Absalom is a very promising exact solution approach although the additional assignment restrictions complicate the problem considerably and necessitate a relaxation of some components of Salome.  相似文献   

3.
In this paper, we introduced learning effect into assembly line balancing problems. In many realistic settings, the produced worker(s) (or machine(s)) develops continuously by repeated the same or similar activities. Therefore, the production time of product shortens if it is processed later. We show that polynomial solutions can be obtained for both simple assembly line balancing problem (SALBP) and U-type line balancing problem (ULBP) with learning effect.  相似文献   

4.
The classical Simple Assembly Line Balancing Problem (SALBP) has been widely enriched over the past few years with many realistic approaches and much effort has been made to reduce the distance between the academic theory and the industrial reality. Despite this effort, the scheduling of the execution of tasks assigned to every workstation following the balancing of the assembly line has been scarcely reported in the scientific literature. This is supposed to be an operational concern that the worker should solve himself, but in several real environments, setups between tasks exist and optimal or near-optimal tasks schedules should be provided inside each workstation. The problem presented in this paper adds sequence-dependent setup time considerations to the classical SALBP in the following way: whenever a task is assigned next to another at the same workstation, a setup time must be added to compute the global workstation time. After formulating a mathematical model for this innovative problem and showing the high combinatorial nature of the problem, eight different heuristic rules and a GRASP algorithm are designed and tested for solving the problem in reasonable computational time.  相似文献   

5.
The simple assembly line balancing problem (SALBP) is a well-studied NP-complete problem for which a new problem database of generated instances was published in 2013. This paper describes the application of a branch, bound, and remember (BB&R) algorithm using the cyclic best-first search strategy to this new database to produce provably exact solutions for 86% of the unsolved problems in this database. A new backtracking rule to save memory is employed to allow the BB&R algorithm to solve many of the largest problems in the database.  相似文献   

6.
Time and space assembly line balancing considers realistic multi-objective versions of the classical assembly line balancing industrial problems. It involves the joint optimisation of conflicting criteria such as the cycle time, the number of stations, and/or the area of these stations. The different problems included in this area also inherit the precedence constraints and the cycle time limitations from assembly line balancing problems. The presence of these hard constraints and their multi-criteria nature make these problems very hard to solve. Multi-objective constructive metaheuristics (in particular, multi-objective ant colony optimisation) have demonstrated to be suitable approaches to solve time and space assembly line balancing problems. The aim of this contribution is to present a new mechanism to induce diversity in an existing multi-objective ant colony optimisation algorithm for the 1/3 variant of the time and space assembly line balancing problem. This variant is quite realistic in the automative industry as it involves the joint minimisation of the number and the area of the stations given a fixed cycle time limit. The performance of our proposal is validated considering ten real-like problem instances. Moreover, the diversity induction mechanism is also tested on a real-world instance from the Nissan plant in Barcelona (Spain).  相似文献   

7.
Many assembly lines are now being designed as U-type assembly lines rather than straight lines because of the pressure of the just-in-time (JIT) manufacturing concept. Since any type of an assembly line balancing problem is known to be NP-hard, there has been a growing tendency toward using evolutionary algorithms to solve such a hard problem. This paper proposes a new population-based evolutionary algorithm, namely imperialist competitive algorithm (ICA) inspired by the process of socio-political evolution, to address the multi-objective U-type assembly line balancing problem (UALBP). Two considered objectives are to minimize the line efficiency and minimize the variation of workload. Furthermore, the Taguchi design is applied to tune the effective parameters of the proposed ICA. To demonstrate the efficiency of the proposed algorithm, the associated results are compared against an efficient genetic algorithm (GA) in the literature over a large group of benchmarks taken from the literature. The computational results show that the proposed ICA outperforms GA.  相似文献   

8.
In this paper, a goal programming model for the simple U-line balancing (ULB) problem is developed. The model is based on the integer programming formulation developed by Urban [Urban, Note: Optimal balancing of U-shaped assembly lines, Management Science 44(5) (1998) 738–741] for the ULB problem and the goal model of Deckro and Rangachari [Deckro, Rangachari, A goal approach to assembly line balancing, Computers and Operations Research 17 (1990) 509–521] developed for the traditional single model assembly line balancing (ALB) problem. The proposed model which is the first multi-criteria decision making approach to the U-line version provides increased flexibility to the decision maker since several conflicting goals can be simultaneously considered.  相似文献   

9.
多目标装配线平衡的优化算法   总被引:6,自引:0,他引:6  
在生产制造系统中,装配线的平衡需要针对多个目标,传统的装配线平衡问题,优化单一目标,忽略了目标之间的联系。优化一个目标的同时,劣化了另外一个目标。章研究了多目标装配线平衡问题,探讨了这些目标之间的联系,设计了禁忌搜索算法求解多目标装配线的平衡问题。章从生产管理系统的角度优化多目标装配线平衡,与单一目标相比,具有显的改进。  相似文献   

10.
Assigning tasks to work stations is an essential problem which needs to be addressed in an assembly line design. The most basic model is called simple assembly line balancing problem type 1 (SALBP-1). We provide a survey on 12 heuristics and 9 lower bounds for this model and test them on a traditional and a lately-published benchmark dataset. The present paper focuses on algorithms published before 2011.  相似文献   

11.
Many heuristics have been proposed for the assembly line balancing problem due to its computational complexity and difficulty in identifying an optimal solution. Still, the basic line balancing model fails to consider a number of realistic elements. The implementation of a Just-In-Time manufacturing system generally entails the replacement of traditional straight assembly lines with U-shaped lines. An important issue in the U-line balancing problem is the consideration of task time variability due to human factors or various disruptions. In this paper, we consider the stochastic U-line balancing problem. A hybrid heuristic is presented consisting of an initial feasible solution module and a solution improvement module. To gain insight into its performance, we analyze the heuristic under different scenarios of task time variability. Computational results clearly demonstrate the efficiency and robustness of our algorithm.  相似文献   

12.
A new branch-and-bound algorithm is presented to solve the two-sided assembly line balancing problem of type 1 (TALB-1). First, a pair of two directly facing station is defined as a position, and then the two-sided assembly line (TAL) is relaxed to a one-sided assembly line (OAL). Some new lower bound on positions are computed, and dominance rules and reduction rules for the one-sided assembly line balancing problem of type 1 (OALB-1) are extended and incorporated into a station-oriented assignment procedure for the TALB-1 problem. Finally, the tests are carried out on a well-known benchmark set of problem instances, and experimental results demonstrate that the proposed procedure is efficient.  相似文献   

13.
The simple assembly line balancing problem is the simplification of a real problem associated to the assignment of the elementary tasks required for assembly of a product in an assembly line. This problem has been extensively studied in the literature for more than half a century. The present work proposes a new procedure to solve the problem we call Bounded Dynamic Programming. This use of the term Bounded is associated not only with the use of bounds to reduce the state space but also to the reduction of such space based on heuristics. This procedure is capable of obtaining an optimal solution rate of 267 out of 269 instances, which have been used in previous works, thus obtaining the best-known performance for the problem. These results are an improvement from any previous procedure found in the literature even when using smaller computing times.  相似文献   

14.
In this paper, a shortest route formulation of simple U-type assembly line balancing (SULB) problem is presented and illustrated on a numerical example. This model is based on the shortest route model developed in [Manage. Sci. 11 (2) (1964) 308.] for the traditional single model assembly line balancing problem.  相似文献   

15.
We propose simple heuristics for the assembly line worker assignment and balancing problem. This problem typically occurs in assembly lines in sheltered work centers for the disabled. Different from the well-known simple assembly line balancing problem, the task execution times vary according to the assigned worker. We develop a constructive heuristic framework based on task and worker priority rules defining the order in which the tasks and workers should be assigned to the workstations. We present a number of such rules and compare their performance across three possible uses: as a stand-alone method, as an initial solution generator for meta-heuristics, and as a decoder for a hybrid genetic algorithm. Our results show that the heuristics are fast, they obtain good results as a stand-alone method and are efficient when used as a initial solution generator or as a solution decoder within more elaborate approaches.  相似文献   

16.
In production systems of automobile manufacturers, multi-variant products are assembled on paced final assembly lines. The assignment of operations to workplaces and workers deter mines the productivity of the manufacturing process. In research, various exact and heuristic solution procedures have been developed for different versions of the so-called assembly line balancing problem.  相似文献   

17.
The present article focuses on the application of a procedure based on ant colonies to solve an assembly line balancing problem. After an introduction to assembly line problems, the problem under study is presented: the Time and Space constrained Assembly Line Balancing Problem (TSALBP); and a basic model of one of its variants is put forward for study. Subsequently, an ant algorithm is presented that incorporates some ideas that have offered good results with simple balancing problems. Finally, the validity of the proposed algorithms is tested by means of a computational experience with reference instances, and the conclusions of the study are presented.  相似文献   

18.
基于GA-SA的混合U型装配线平衡   总被引:2,自引:0,他引:2  
在JIT生产系统中,混合U型装配线是一种能够满足市场多样化需求的柔性系统,章综合考虑作业元素的分配和产品的投产排序两个因素,建立了混合U型装配线的平衡模型,给出了人工智能算法的平衡方法,从全局优化的角度研究了混合U型装配线的平衡问题。  相似文献   

19.
Assembly lines are special flow-line production systems which are of great importance in the industrial production of high quantity standardized commodities. Recently, assembly lines even gained importance in low volume production of customized products (mass-customization). Due to high capital requirements when installing or redesigning a line, its configuration planning is of great relevance for practitioners. Accordingly, this attracted attention of many researchers, who tried to support real-world configuration planning by suited optimization models (assembly line balancing problems). In spite of the enormous academic effort in assembly line balancing, there remains a considerable gap between requirements of real configuration problems and the status of research. To ease communication between researchers and practitioners, we provide a classification scheme of assembly line balancing. This is a valuable step in identifying remaining research challenges which might contribute to closing the gap.  相似文献   

20.
Flexibility and automation in assembly lines can be achieved by the use of robots. The robotic assembly line balancing (RALB) problem is defined for robotic assembly line, where different robots may be assigned to the assembly tasks, and each robot needs different assembly times to perform a given task, because of its capabilities and specialization. The solution to the RALB problem includes an attempt for optimal assignment of robots to line stations and a balanced distribution of work between different stations. It aims at maximizing the production rate of the line. A genetic algorithm (GA) is used to find a solution to this problem. Two different procedures for adapting the GA to the RALB problem, by assigning robots with different capabilities to workstations are introduced: a recursive assignment procedure and a consecutive assignment procedure. The results of the GA are improved by a local optimization (hill climbing) work-piece exchange procedure. Tests conducted on a set of randomly generated problems, show that the Consecutive Assignment procedure achieves, in general, better solution quality (measured by average cycle time). Further tests are conducted to determine the best combination of parameters for the GA procedure. Comparison of the GA algorithm results with a truncated Branch and Bound algorithm for the RALB problem, demonstrates that the GA gives consistently better results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号