首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New results for the squeeze flow of Bingham plastics show the shape of the free surface in quasi-steady-state simulations, and its effect on the yielded/unyielded regions and the squeeze force. The present simulation results are obtained for both planar and axisymmetric geometries as in our previous paper [A. Matsoukas, E. Mitsoulis, Geometry effects in squeeze flow of Bingham plastics, J. Non-Newtonian Fluid Mech. 109 (2003) 231–240] and for aspect ratios ranging from 0.01 to 1. Bigger aspect ratios produce more free surface movement relative to the disk radius or plate length, but less movement relative to the gap. Planar geometries give more free surface movement than axisymmetric ones. Viscoplasticity serves to reduce the free surface movement and its deformation. In some cases of planar geometries and big aspect ratios, unyielded regions appear at the free surface, while the small unyielded regions near the center of the disks or plates are not affected. Including the free surface in the calculations of the squeeze force adds a small percentage to the values depending on aspect ratio and Bingham number. The previously fitted easy-to-use equations are corrected to account for that effect.  相似文献   

2.
The squeeze flow of a rigid-plastic medium between parallel disks is considered for small gaps with partial wall slip. The stress distribution and the squeeze force between parallel disks of a rigid-plastic medium with the following four different slip boundary conditions are obtained. (1) The Coulombic friction condition is applied, and the stress distribution on the wall is derived, which is linear or exponential distribution in the no-slip area or slip area. (2) It is assumed that the slip velocity at the disks increases linearly with the radius up to the rim slip velocity, with the stress distribution and the squeeze force gained. (3) The assumption that the slip velocity at the disks is related to the shear stress component is used, with the stress distribution and the squeeze force obtained, which is equivalent to the result given in (2). (4) Rational velocity components are introduced, and the stress distribution is satisfied.  相似文献   

3.
The steady, pressure-driven flow of a Herschel-Bulkley fluid in a microchannel is considered, assuming that different power-law slip equations apply at the two walls due to slip heterogeneities, allowing the velocity profile to be asymmetric. Three different flow regimes are observed as the pressure gradient is increased. Below a first critical pressure gradient G 1, the fluid moves unyielded with a uniform velocity, and thus, the two slip velocities are equal. In an intermediate regime between G 1 and a second critical pressure gradient G 2, the fluid yields in a zone near the weak-slip wall and flows with uniform velocity near the stronger-slip wall. Beyond this regime, the fluid yields near both walls and the velocity are uniform only in the central unyielded core. It is demonstrated that the central unyielded region tends towards the midplane only if the power-law exponent is less than unity; otherwise, this region rends towards the weak-slip wall and asymmetry is enhanced. The extension of the different flow regimes depends on the channel gap; in particular, the intermediate asymmetric flow regime dominates when the gap becomes smaller than a characteristic length which incorporates the wall slip coefficients and the fluid properties. The theoretical results compare well with available experimental data on soft glassy suspensions. These results open new routes in manipulating the flow of viscoplastic materials in applications where the flow behavior depends not only on the bulk rheology of the material but also on the wall properties.  相似文献   

4.
The laminar flow of power-law and yield-stress fluids in 180° curved channels of rectangular cross section was studied experimentally and numerically in order to understand the effect of rheological fluid behavior on the Dean instability that appears beyond a critical condition in the flow. This leads to the apparition of Dean vortices that differ from the two corner vortices created by the channel wall curvature.Flow visualizations showed that the Dean vortices develop first in the near-wall zone on the concave (outer) wall, where the shear rate is higher and the viscosity weaker; then they penetrate into the centre of the channel cross section where power-law fluids have high viscosity and Bingham fluids are unyielded in laminar flow. Based on the complete formation on the concave wall of the new pairs of counter-rotating vortices (Dean vortices), the critical value of the Dean number decreases as the power-law index increases for the power-law fluids, and the Bingham number decreases for the Bingham fluids. For power-law fluids, a diagram of critical Dean numbers, based on the number of Dean vortices formed, was established for different axial positions. For the same flow conditions, the critical Dean number obtained using the axial velocity gradient criterion was smaller then that obtained with the visualization technique.  相似文献   

5.
两平行刚性圆盘挤压理想刚塑性介质时压力规律研究   总被引:1,自引:0,他引:1  
两平行刚性圆盘挤压理想刚塑性介质时,通常考虑圆盘与介质的界面之间存在部分滑移,对库仑摩擦条件下的压力规律做了进一步的研究,同时,引入更合理的速度场,假设圆盘边缘处滑移速度一定,介质的滑移速度随着半径线性变化,得到了压力分布规律,对不同的摩擦条件及用不同方法计算得到的结果进行了对比。  相似文献   

6.
Numerical simulations are undertaken for unsteady flows of an ideal Bingham fluid in a circular Couette viscometer. The main difficulties in such simulations are caused by the non-differentiability of the constitutive equation and the need to determine the position and shape of the yield surface separating the yielded zones from the unyielded ones. In this work, these difficulties are overcome by using a numerical method based on variational inequalities, i.e. the augmented Lagrangian/Uzawa method. The start-up and cessation of circular Couette flows of a Bingham fluid are solved numerically assuming that only one of the cylinders is rotating. An improved theoretical upper bound for the stopping time in the case of cessation is derived. The numerical estimates for the stopping time compare well with the theoretical bounds. Moreover, with the adopted method the evolution of the velocity profiles and the locations of yielded/unyielded surfaces are accurately calculated. In flow cessation, we observe an interesting effect, namely the appearance of a small unyielded region adjoined to the outer cylinder shortly before cessation.  相似文献   

7.
The augmented Lagrangian/Uzawa method has been used to study benchmark one-dimensional cessation flow problems of a Bingham fluid, such as the plane Couette flow, and the plane, round, and annular Poiseuille flows. The calculated stopping times agree well with available theoretical upper bounds for the whole range of Bingham numbers and with previous numerical results. The applied method allows for easy determination of the yielded and unyielded regions. The evolution of the rigid zones in these unsteady flows is presented. It is demonstrated that the appearance of an unyielded zone near the wall occurs for any non-zero Bingham number not only in the case of a round tube but also in the case of an annular tube of small radii ratio. The advantages of using the present method instead of regularizing the constitutive equation are also discussed.  相似文献   

8.
The squeeze flow of a Bingham-type material between finite circular disks is considered. The material is modelled assuming that the unyielded region behaves like a linear elastic core. A lubrication approximation is considered. It is shown that no paradox can arise, such as that has been pointed out for many years by various authors when the unyielded region in the fluid is supposed to be perfectly rigid. The unyielded region is shown to be always detached from the axis of symmetry. Some numerical simulations are worked out for different squeezing rates.  相似文献   

9.
The Bingham fluid flow is numerically studied using the lattice Boltzmann method by incorporating the Papanastasiou exponential modification approach. The He–Luo incompressible lattice Boltzmann model is employed to avoid numerical instability usually encountered in non-Newtonian fluid simulations due to a strong non-linear relationship between the shear rate tensor and the rate-of-strain tensor. First, the value of the regularization parameter in Bingham fluid mimicking is analyzed and a method to determine the value is proposed. Then, the model is validated by pressure-driven planar channel flow and planar sudden expansion flow. The velocity profiles for the pressure-driven planar channel flow are in good agreement with analytical solutions. The calculated reattachment lengths for a 2:1 planar sudden expansion flow also agree well with the available data. Finally, the Bingham flow over a cavity is studied, and the streamlines and yielded/unyielded regions are discussed.  相似文献   

10.
Numerical simulations have been undertaken for the creeping pressure-driven flow of a Bingham plastic past a cylinder kept between parallel plates. Different gap/cylinder diameter ratios have been studied ranging from 2:1 to 50:1. The Bingham constitutive equation is used with an appropriate modification proposed by Papanastasiou, which applies everywhere in the flow field in both the yielded and practically unyielded regions. The emphasis is on determining the extent and shape of yielded/unyielded regions along with the drag coefficient for a wide range of Bingham numbers. The present results extend previous simulations for creeping flow of a cylinder in an infinite medium and provide calculations of the drag coefficient around a cylinder in the case of wall effects.  相似文献   

11.
The unsteady motion of an incompressible, viscous, stratified fluid between two parallel infinite disks maintained at different temperatures is studied under the influence of a uniform transverse magnetic field. The whole system is under rigid rotation in the initial state and perturbations are created by the small amplitude torsional oscillations of the disks. The time required for the transient velocity and temperature to decay is found for various ranges of the values of the forcing frequency of the disks. The steady state velocity and temperature distributions represent boundary layers on the disks and an interior flow. The interplay between the Hartmann number and the Ekman number in determining the boundary layers on the disks is discussed.  相似文献   

12.
Analytical solutions of Couette–Poiseuille flow of Bingham fluids between two porous parallel plates are derived. This study extends the work of Tsangaris et al. [S. Tsangaris, C. Nikas, G. Tsangaris, P. Neofytou, Couette flow of a Bingham plastic in a channel with equally porous parallel walls, J. Non-Newtonian Fluid Mech. 144 (2007) 42–48] to a general situation where the slip effect at the porous walls is considered. It is found that the form of the flow inside the channel depends not only on the Bingham number Bn, the Couette number Co (related to the moving wall) and the transverse Reynolds number Re, but also on the slip parameter Cs at the porous walls. In both the CoRe diagram and the CoBn diagram, the region where plug flow appears enlarges as the slip effect increases, especially in the case where Co is negative. In the case where plug flow and double shear flow coexist, the transverse position of the plug flow and the shear rate at the boundaries exhibit two opposite behaviors when Cs increases, depending on the value of the other three dimensionless numbers. In other cases, slippage always weakens the shearing deformation of the flow.  相似文献   

13.
The micro Poiseuille flow for liquid argon flowing in a nanoscale channel formed by two solid walls was studied in the present paper. The solid wall material was selected as platinum, which has well established interaction potential. We consider the intermolecular force not only among the liquid argon molecules, but also between the liquid argon atoms and the solid wall particles, therefore three regions, i.e. the liquid argon computation domain, the top and bottom solid wall regions are included for the force interaction. The present MD (Molecular Dynamics) simulation was performed without any assumptions at the wall surface. The objective of the study is to find how the flow and the slip boundaries at the wall surface are affected by the applied gravity force, or the shear rate. The MD simulations are performed in a nondimensional unit system, with the periodic boundary conditions applied except in the channel height direction. Once the steady state is reached, the macroscopic parameters are evaluated using the statistical mechanics approach. For all the cases tested numerically in the present paper, slip boundaries occur, and such slip velocity at the stationary wall surface increases with increasing the applied gravity force, or the shear rate. The slip length, which is defined as the distance that the liquid particles shall travel beyond the wall surfaces to reach the same velocity as the wall surface, sharply decreases at small shear rate, then slightly decreases with increasing the applied shear rate. We observe that the liquid viscosity remains nearly constant at small shear rates, and the Newtonian flow occurs. However, with increasing the shear rate, the viscosity increases and the non-Newtonian flow appears.  相似文献   

14.
15.
The flow and shape evolution during the compression of a finite amount of a Bingham plastic is investigated by means of numerical simulations. The problem relates to the popular compression test used for the rheological characterization of non-Newtonian fluids. The flow is modelled in Lagrangian coordinates using the Papanastasiou regularization for the Bingham plastic and a mixed-Galerkin finite element method. Simulations have been performed for compression under both constant load and constant velocity. Results for various Reynolds and Bingham numbers are presented and discussed.  相似文献   

16.
On the spin coating of viscoplastic fluids   总被引:3,自引:0,他引:3  
The spin coating of a viscoplastic material is studied using a continuous viscosity function. Thus, the transient model requires the calculation of only velocity, pressure and the moving-free surface of the liquid film, but not the calculation of the yield surface within the liquid. A Finite Element/Newton-Raphson method is presented for solving this moving boundary problem after mapping the deforming domain onto a fixed one. Assuming axial symmetry, the effect of the Bingham, Reynolds, Capillary and gravitational Bond numbers is examined. The magnitude of the first two parameters affects significantly the flow field and the shape of the film as well as the required spinning time in order to produce a film of uniform thickness. Depending on their values, large departures from the corresponding Newtonian solution may be obtained. In these cases the film does not thin out uniformly, but a maximum in its profile is created at the center of the disk. Then, the magnitude of the Capillary number also affects the size of this maximum. The gravitational Bond number affects the film thickness and its profile to a lesser extent.Dedicated to the memory of Professor Tasos C. Papanastasiou  相似文献   

17.
A numerical study is carried out for the axisymmetric steady laminar incompressible flow of an electrically conducting micropolar fluid between two infinite parallel porous disks with the constant uniform injection through the surface of the disks. The fluid is subjected to an external transverse magnetic field. The governing nonlinear equations of motion are transformed into a dimensionless form through von Karman’s similarity transformation. An algorithm based on a finite difference scheme is used to solve the reduced coupled ordinary differential equations under associated boundary conditions. The effects of the Reynolds number, the magnetic parameter, the micropolar parameter, and the Prandtl number on the flow velocity and temperature distributions are discussed. The results agree well with those of the previously published work for special cases. The investigation predicts that the heat transfer rate at the surfaces of the disks increases with the increases in the Reynolds number, the magnetic parameter, and the Prandtl number. The shear stresses decrease with the increase in the injection while increase with the increase in the applied magnetic field. The shear stress factor is lower for micropolar fluids than for Newtonian fluids, which may be beneficial in the flow and thermal control in the polymeric processing.  相似文献   

18.
In studies of the flow of a Bingham fluid in a parallel-plate plastometer there has been disagreement about whether or not a yield surface exists, and if it does exist what shape the yield surface has.The present authors have re-exemined the problem using a finite element program and have concluded that a small plug of unyielded fluid exists adjacent to the centre of the plates. This result has been verified by replacing the unyielded plug with a solid body.  相似文献   

19.
In this paper, the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined. Based on lubrication theory, the squeeze force is calculated by deriving the pressure and velocity expressions. The results of the normal squeeze force are discussed, and fitting functions of the squeeze and correction coefficients are given. The squeeze force between the rigid spheres increases linearly or logarithmically with the velocity when most or part of the boundary fluid reaches the yield state, respectively. Furthermore, the slip correction coefficient decreases with the increase in the velocity. The investigation may contribute to the further study of bi-viscosity fluids between rigid spheres with wall slip.  相似文献   

20.
An unsteady swirled turbulent flow between two rotating flat disks is modeled. The flow is directed along the radius toward the rotation axis. A quasi-steady character of the turbulent flow, caused by oscillations of the radial velocity at the entrance to the gap between the disks with a period close to the time of dynamic relaxation of the particle, is studied with the use of the known two-equation Wilcox’s k-ω model of turbulence. The influence of the Stokes number and the frequency and amplitude of oscillations of the carrier medium on the motion of single particles in the field of centrifugal and aerodynamic forces is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号