首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In this paper the physical aspects of the statistical theory of the energy levels of complex physical systems and their relation to the mathematical theory of random matrices are discussed. After a preliminary introduction we summarize the symmetry properties of physical systems. Different kinds of ensembles are then discussed. This includes the Gaussian, orthogonal, and unitary ensembles. The problem of eigenvalue-eigenvector distributions of the Gaussian ensemble is then discussed, followed by a discussion on the distribution of the widths. In the appendices we discuss the symplectic group and quaternions, and the Gaussian ensemble in detail.  相似文献   

5.
A new ensemble interpretation of quantum mechanics is proposed according to which the ensemble associated to a quantum state really exists: it is the ensemble of all the systems in the same quantum state in the universe. Individual systems within the ensemble have microscopic states, described by beables. The probabilities of quantum theory turn out to be just ordinary relative frequencies probabilities in these ensembles. Laws for the evolution of the beables of individual systems are given such that their ensemble relative frequencies evolve in a way that reproduces the predictions of quantum mechanics.  相似文献   

6.
An outline of Morita? equilibrium ensemble approach to disordered systems is given, and hitherto unnoticed relations to other, more conventional approaches in the theory of disordered systems are pointed out. It is demonstrated to constitute a generalization of the idea of grand ensembles and to be intimately related also to conventional low-concentration expansions as well as to perturbation expansions about ordered reference systems. Moreover, we draw attention to the variational content of the equilibrium ensemble formulation. A number of exact results are presented, among them general solutions for site- and bond- diluted systems in one dimension, both for uncorelated, and for correlated disorder.  相似文献   

7.
A new statistical procedure is described for obtaining the thermodynamic properties of a molecular system directly as functions of the pressure. This procedure differs in principle from that suggested by Guggenheim [3] in that the members of the representative ensemble are envisaged as being in constant mechanical equilibrium with the exterior. The quantal and classical theories of petit micro-canonical and canonical ensembles of systems at constant pressure are presented, and shown to lead to the established results for perfect and imperfect gases, and for a hypothetical one-dimensional system. The conclusion that the statistical compressibility of a molecular system is essentially positive follows directly from the theory. An alternative procedure which leads to a more satisfactory form of Guggenheim's equation is also described, and its relation to the new approach is shown.  相似文献   

8.
We consider the problem of modeling complex systems where little or nothing is known about the structure of the connections between the elements. In particular, when such systems are to be modeled by graphs, it is unclear what vertex degree distributions these graphs should have. We propose that, instead of attempting to guess the appropriate degree distribution for a poorly understood system, one should model the system via a set of sample graphs whose degree distributions cover a representative range of possibilities and account for a variety of possible connection structures. To construct such a representative set of graphs, we propose a new random graph generator, Random Plots, in which we (1) generate a diversified set of vertex degree distributions and (2) target a graph generator at each of the constructed distributions, one-by-one, to obtain the ensemble of graphs. To assess the diversity of the resulting ensembles, we (1) substantialize the vague notion of diversity in a graph ensemble as the diversity of the numeral characteristics of the graphs within this ensemble and (2) compare such formalized diversity for the proposed model with that of three other common models (Erdős–Rényi–Gilbert (ERG), scale-free, and small-world). Computational experiments show that, in most cases, our approach produces more diverse sets of graphs compared with the three other models, including the entropy-maximizing ERG. The corresponding Python code is available at GitHub.  相似文献   

9.
10.
11.
Spindependent ensembles for disordered electronic systems are examined in the region of extended states. We derive relations between spindependent and previously studied spinless ensembles. We prove that these relations are valid in all orders of a graph theory, on the basis of which we propose them to be exact. These exact relations and supplementary two loop order calculations in 2+ dimensions are used to reveal the existence of universality classes for the critical behaviour at the mobility edges. The mobility edge behaviour of a spindependent ensemble with real (random) hopping agrees with that of the spinless phase invariant ensemble except for a crossover to the real matrix ensemble in the limit of vanishing spinflip amplitudes. Anomalous properties in the band center are also discussed. We derive a transformation which maps arbitrary correlation functions of a complex spindependent ensemble into those of the real matrix ensemble. This relation implies the absence of a mobility edge for the complex spindependent ensemble within the validity region of the theory.  相似文献   

12.
Since Gibbs synthesized a general equilibrium statistical ensemble theory, many theorists have attempted to generalized the Gibbsian theory to
non-equilibrium phenomena domain, however the status of the theory of non-equilibrium phenomena can not be said as firm as well established as the
Gibbsian ensemble theory. In this work, we present a framework for the non-equilibrium statistical ensemble formalism based on a subdynamic kinetic
equation (SKE) rooted from the Brussels-Austin school and followed by some up-to-date works. The constructed key is to use a similarity transformation between Gibbsian ensembles formalism based on Liouville equation and the subdynamic ensemble formalism based on the SKE. Using this formalism, we study the spin-Boson system, as cases of weak coupling or strongly coupling, and obtain the reduced density operators for the Canonical ensembles easily.  相似文献   

13.

Dynamical ensembles have been introduced to study constrained stochastic processes. In the microcanonical ensemble, the value of a dynamical observable is constrained to a given value. In the canonical ensemble a bias is introduced in the process to move the mean value of this observable. The equivalence between the two ensembles means that calculations in one or the other ensemble lead to the same result. In this paper, we study the physical conditions associated with ensemble equivalence and the consequences of non-equivalence. For continuous time Markov jump processes, we show that ergodicity guarantees ensemble equivalence. For non-ergodic systems or systems with emergent ergodicity breaking, we adapt a method developed for equilibrium ensembles to compute asymptotic probabilities while caring about the initial condition. We illustrate our results on the infinite range Ising model by characterizing the fluctuations of magnetization and activity. We discuss the emergence of non-ergodicity by showing that the initial condition can only be forgotten after a time that scales exponentially with the number of spins.

  相似文献   

14.
Classical and quantum Gibbs ensembles are constructed for equilibrium statistical mechanics in the framework of an extension to many-body theory of a relativistic mechanics proposed by Stueckelberg. In addition to the usual chemical potential in the grand canonical ensemble, there is a new potential corresponding to the mass degree of freedom of relativistic systems. It is shown that in the nonrelativistic limit the relativistic ensembles we have obtained reduce to the usual ones, and mass fluctuations for the free-particle gas approach the fluctuations in N. The ultrarelativistic limit of the canonical ensemble for the free-particle gas differs from the corresponding limit of the ensemble proposed by Jüttner and Pauli. Due to the mass degree of freedom, the quantum counting of states is different from that of the nonrelativistic theory. If the mass distribution is sufficiently sharp, the thermodynamical effects of this multiplicity will not be large. There may, however, be detectable effects such as a shift in the Fermi level and the critical temperature for Bose-Einstein condensation, and some change in specific heats.  相似文献   

15.
We consider a general class of statistical mechanical models of coherent structures in turbulence, which includes models of two-dimensional fluid motion, quasi-geostrophic flows, and dispersive waves. First, large deviation principles are proved for the canonical ensemble and the microcanonical ensemble. For each ensemble the set of equilibrium macrostates is defined as the set on which the corresponding rate function attains its minimum of 0. We then present complete equivalence and nonequivalence results at the level of equilibrium macrostates for the two ensembles. Microcanonical equilibrium macrostates are characterized as the solutions of a certain constrained minimization problem, while canonical equilibrium macrostates are characterized as the solutions of an unconstrained minimization problem in which the constraint in the first problem is replaced by a Lagrange multiplier. The analysis of equivalence and nonequivalence of ensembles reduces to the following question in global optimization. What are the relationships between the set of solutions of the constrained minimization problem that characterizes microcanonical equilibrium macrostates and the set of solutions of the unconstrained minimization problem that characterizes canonical equilibrium macrostates? In general terms, our main result is that a necessary and sufficient condition for equivalence of ensembles to hold at the level of equilibrium macrostates is that it holds at the level of thermodynamic functions, which is the case if and only if the microcanonical entropy is concave. The necessity of this condition is new and has the following striking formulation. If the microcanonical entropy is not concave at some value of its argument, then the ensembles are nonequivalent in the sense that the corresponding set of microcanonical equilibrium macrostates is disjoint from any set of canonical equilibrium macrostates. We point out a number of models of physical interest in which nonconcave microcanonical entropies arise. We also introduce a new class of ensembles called mixed ensembles, obtained by treating a subset of the dynamical invariants canonically and the complementary set microcanonically. Such ensembles arise naturally in applications where there are several independent dynamical invariants, including models of dispersive waves for the nonlinear Schrödinger equation. Complete equivalence and nonequivalence results are presented at the level of equilibrium macrostates for the pure canonical, the pure microcanonical, and the mixed ensembles.  相似文献   

16.
We propose a method for reconstructing model differential equations with time delay for ensembles of coupled time-delay systems from their time series. The method has made it possible to recover the parameters of elements of the ensemble as well as the architecture and strength of couplings in ensembles of nonidentical systems with delay with an arbitrary number of unidirectional and bidirectional couplings between them. The effectiveness of the method is demonstrated for chaotic and periodic time series of model equations for ensembles of diffusively coupled systems with time delay in the presence of noise, as well as experimental time series for resistively coupled radiotechnical oscillators with delayed feedback.  相似文献   

17.
We consider an ensemble of self-dual matrices with arbitrary complex entries. This ensemble is closely related to a previously defined ensemble of anti-symmetric matrices with arbitrary complex entries. We study the two-level correlation functions numerically. Although no evidence of non-monotonicity is found in the real space correlation function, a definite shoulder is found. On the analytical side, we discuss the relationship between this ensemble and the β=4 two-dimensional one-component plasma, and also argue that this ensemble, combined with other ensembles, exhausts the possible universality classes in non-hermitian random matrix theory. This argument is based on combining the method of hermitization of Feinberg and Zee with Zirnbauer's classification of ensembles in terms of symmetric spaces.  相似文献   

18.
19.
We present a density-functional approach for dealing with inhomogeneous fluids in the canonical ensemble. A general relation is proposed between the free-energy functionals in the canonical and the grand canonical ensembles. The minimization of the canonical-ensemble free-energy functional gives rise to Euler-Lagrange equations which involve averaged Ornstein-Zernike equations of second and third order. The theory is especially appropriate for systems with a small, fixed number of particles. As an example of application we obtain accurate results for the density profile of a hard-sphere fluid in a closed spherical cavity that contains only a few particles.  相似文献   

20.
Superradiance, the enhanced collective emission of energy from a coherent ensemble of quantum systems, has been typically studied in atomic ensembles. In this work we study theoretically the enhanced emission of energy from coherent ensembles of harmonic oscillators. We show that it should be possible to observe harmonic oscillator superradiance for the first time in waveguide arrays in integrated photonics. Furthermore, we describe how pairwise correlations within the ensemble can be measured with this architecture. These pairwise correlations are an integral part of the phenomenon of superradiance and have never been observed in experiments to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号