首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
以耦合非线性薛定谔方程为理论模型,数值研究了两个一阶暗怪波在正常色散单模光纤中的相互作用.基于一阶暗怪波精确解,采用分步傅里叶数值模拟法,从间距、相位差和振幅系数比方面讨论相邻两个一阶暗怪波之间的相互作用.基于二阶暗怪波精确解,讨论了两个一阶暗怪波的非线性相互作用.研究结果表明:同相位情况下,间距参数T1为0、5、20时,相邻两个一阶暗怪波相互作用激发产生“扭结型”暗怪波.相比较于单个暗怪波发生能量的弥散,“扭结型”暗怪波分裂形成多个次暗怪波.反相位情况下,间距参数T1为2、7、12时,相邻两个一阶暗怪波相互作用也可以激发产生“扭结型”暗怪波.并且“扭结型”暗怪波初始激发的空间位置偏离原始单个暗怪波的位置5.振幅系数比越大,该空间位置越接近5.二阶暗怪波可以看作是两个一阶暗怪波的非线性叠加,复合型和三组分型二阶暗怪波与相邻两个一阶暗怪波的相互作用略有相似.  相似文献   

2.
The parametric amplification of a light wave in nonlinear optical crystals under a high-frequency pump and a periodic spatial modulation of the coefficient of nonlinear coupling of the waves is considered. The value of the period of modulation of the nonlinear coefficient that corresponds to the maximum gain is found. The behavior of the phase and intensity of the amplified wave is studied using the matrix approach. For the case of the optimum phase relation between the interacting waves, the expression for the intensity of the amplified wave is obtained, which, in the limit, gives the result for a homogeneous nonlinear crystal.  相似文献   

3.
We study interactions of planetary waves propagating across the equator with trapped Rossby or Yanai modes, and the mean flow. The equatorial waveguide with a mean current acts as a resonator and responds to planetary waves with certain wave numbers by making the trapped modes grow. Thus excited waves reach amplitudes greatly exceeding the amplitude of the incoming wave. Nonlinear saturation of the excited waves is described by an amplitude equation with one or two attracting equilibrium solutions. In the latter case spatial modulation leads to formation of characteristic defects in the wave field. The evolution of the envelopes of long trapped Rossby waves is governed by the driven complex Ginzburg-Landau equation, and by the damped-driven nonlinear Schr?dinger equation for short waves. The envelopes of the Yanai waves obey a simple wave equation with cubic nonlinearity.  相似文献   

4.
For the purpose of describing the joint influence of nonlinear effects and refractive inhomogeneities on the evolution of intense acoustic waves, a model of the medium the local velocity of sound of which is periodic in the transverse direction and decreases in the propagation direction, which generalizes the known models of the layered medium and of the infinitesimally thin phase screen, is proposed. An exact solution is found for the wave with arbitrary initial conditions: time profile and transverse profile. The spatial wave structure in the inhomogeneous medium is calculated; it is shown that narrow high-amplitude regions are formed and the rate of nonlinear effect accumulation changes. It is shown that the amplitude of the wave at long distances from the source may differ little from its initial value due to compensation for the effects of nonlinear attenuation and of focusing by inhomogeneities. Possibilities of amplification of intense waves depending on the proportion between parameters of the wave and those of the inhomogeneous medium are studied.  相似文献   

5.
A weakly nonlinear theory of wave propagation in two superposed dielectric fluids in the presence of a horizontal electric field is investigated using the multiple scales method in (2 + 1)-dimensions. The equation governing the evolution of the amplitude of the progressive waves is obtained in the form of a two-dimensional nonlinear Schrödinger equation. We convert this equation for the evolution of wave packets in (2 + 1)-dimensions, using the function transformation method, into an exponentional and a Sinh-Gordon equation, and obtain classes of soliton solutions for both the elliptic and hyperbolic cases. The phenomenon of nonlinear focusing or collapse is also studied. We show that the collapse is direction-dependent, and is more pronounced at critical wavenumbers, and dielectric constant ratio as well as the density ratio. The applied electric field was found to enhance the collapsing for critical values of these parameters. The modulational instability for the corresponding one-dimensional nonlinear Schrödinger equation is discussed for both the travelling and standing waves cases. It is shown, for travelling waves, that the governing evolution equation admits solitary wave solutions with variable wave amplitude and speed. For the standing wave, it is found that the evolution equation for the temporal and spatial modulation of the amplitude and phase of wave propagation can be used to show that the monochromatic waves are stable, and to determine the amplitude dependence of the cutoff frequencies.Received: 23 November 2003, Published online: 15 March 2004PACS: 47.20.-k Hydrodynamic stability - 52.35.Sb Solitons; BGK modes - 42.65.Jx Beam trapping, self-focusing and defocusing; self-phase modulation - 47.65. + a Magnetohydrodynamics and electrohydrodynamicsM.F. El-Sayed: Permanent address: Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt  相似文献   

6.
Parametric coupling of three traveling waves is studied numerically on an example of magnetoelastic waves in a highly anharmonic antiferromagnetic crystal. The physical mechanism of coupling is explained as a result of modulation of the nonlinear elastic moduli of the crystal by RF electromagnetic pumping. Parametric interaction of a coupled wave triad with homogeneous pumping field results in an instability of explosive type. Above the threshold of instability, the amplitudes of waves increase to occurrence of singularity in finite time. Explosion is accompanied by spatial localization of wave envelopes. The supercritical dynamics of a wave triad is simulated numerically taking into account the third- and fourth-order magnetoelastic anharmonicity of the medium. Violation of the explosive scenario by nonlinear phase mismatch between the coupled waves and pumping field is demonstrated. Modulation of the pumping phase in time is considered as a tool to compensate for the nonlinear mismatch and recondition the explosive amplification and spatial localization of wave triads. A proper phase modulation law is found in a numerical experiment.  相似文献   

7.
Focusing of nonlinear wave groups in deep water   总被引:3,自引:0,他引:3  
The freak wave phenomenon in the ocean is explained by the nonlinear dynamics of phase-modulated wave trains. It is shown that the preliminary quadratic phase modulation of wave packets leads to a significant amplification of the usual modulation (Benjamin-Feir) instability. Physically, the phase modulation of water waves may be due to a variable wind in storm areas. The well-known breather solutions of the cubic Schrödinger equation appear on the final stage of the nonlinear dynamics of wave packets when the phase modulation becomes more uniform.  相似文献   

8.
9.
Rogue waves in shallow water   总被引:1,自引:0,他引:1  
Most of the processes resulting in the formation of unexpectedly high surface waves in deep water (such as dispersive and geometrical focusing, interactions with currents and internal waves, reflection from caustic areas, etc.) are active also in shallow areas. Only the mechanism of modulational instability is not active in finite depth conditions. Instead, wave amplification along certain coastal profiles and the drastic dependence of the run-up height on the incident wave shape may substantially contribute to the formation of rogue waves in the nearshore. A unique source of long-living rogue waves (that has no analogues in the deep ocean) is the nonlinear interaction of obliquely propagating solitary shallow-water waves and an equivalent mechanism of Mach reflection of waves from the coast. The characteristic features of these processes are (i) extreme amplification of the steepness of the wave fronts, (ii) change in the orientation of the largest wave crests compared with that of the counterparts and (iii) rapid displacement of the location of the extreme wave humps along the crests of the interacting waves. The presence of coasts raises a number of related questions such as the possibility of conversion of rogue waves into sneaker waves with extremely high run-up. Also, the reaction of bottom sediments and the entire coastal zone to the rogue waves may be drastic.  相似文献   

10.
We discuss the results of studies of surface-wave transformation by nonuniform flows, performed in the tank of the Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS), and the results of modelling of the influence of iceberg motion on regular background internal waves in the subsurface pycnocline.Transformation of surface waves in the flow field past an immersed sphere is studied both experimentally and theoretically. It is shown that even fairly weak nonuniform flows can cause noticeable changes in the surface-wave field. The sizes of the spatial region in which the characteristics of the surface waves are changed exceed considerably the sizes of the nonuniform-flow region. It is found that the nonlinearity of surface waves leads to an increase in the variability of the surface-wave amplitude in a broad frequency range. The proposed theoretical model describes well the main experimentally observed features of the transformation of nonlinear surface waves in the nonuniform-flow field.It is proved experimentally that background internal waves with frequencies close to those of internal waves in an iceberg wake lead to a considerable transformation of the field of lee waves. The parameters of the resulting wave system are independent of characteristic horizontal sizes of the iceberg model and the length of the internal wave. The total wave system is stationary in the entire velocity range of the model in the case of counterpropagation of background waves. In the case of copropagation of background waves, the nature of the wave system depends on the ratio between the towing velocity and the phase velocity of background waves. In particular, the wave system in the wake can have both a pronounced nonstationary nature and a typical stationary phase pattern.  相似文献   

11.
At singular points of a wave field, where the amplitude vanishes, the phase may become singular and wavefront dislocation may occur. In this Letter we investigate for wave fields in one spatial dimension the appearance of these essentially linear phenomena. We introduce the Chu-Mei quotient as it is known to appear in the ‘nonlinear dispersion relation’ for wave groups as a consequence of the nonlinear transformation of the complex amplitude to real phase-amplitude variables. We show that unboundedness of this quotient at a singular point, related to unboundedness of the local wavenumber and frequency, is a generic property and that it is necessary for the occurrence of phase singularity and wavefront dislocation, while these phenomena are generic too. We also show that the ‘soliton on finite background’, an explicit solution of the NLS equation and a model for modulational instability leading to extreme waves, possesses wavefront dislocations and unboundedness of the Chu-Mei quotient.  相似文献   

12.
Strongly nonlinear dispersive waves described by a general Klein—Gordon equation with slowly varying coefficients and a dissipative perturbation are analyzed using the method of multiple scales. We use the exact equation of wave action. The spatial and temporal slow modulations of the phase shift are shown to be governed by a new equation, which results from linearization of the wave action, its flux, and its dissipation due to perturbations of the slow parameters: frequency and wave number (vector). This result extends to nonlinear partial differential equations, the quite recent work by the authors on nonlinear oscillations governed by ordinary differential equations.  相似文献   

13.
The authors consider a stochastic model based on the interaction and phase coupling amongst wave components that are modified envelope soliton solutions to the nonlinear Schrödinger equation. A probabilistic study is carried out and the resulting findings are compared with ocean wave field observations and laboratory experimental results. The wave height probability distribution obtained from the model is found to match well with prior data in the large wave height region. From the eigenvalue spectrum obtained through the Inverse Scattering Transform, it is revealed that the deep-water wave groups move at a speed different from the linear group speed, which justifies the inclusion of phase correction to the envelope solitary wave components. It is determined that phase synchronization amongst elementary solitary wave components can be critical for the formation of extreme waves in unidirectional sea states.  相似文献   

14.
An analysis of the parameters of nonlinear waves transmitted through a layer of a randomly inhomogeneous medium is carried out. The layer is modeled by a two-dimensional phase screen. Passing through the screen plane, the wave acquires a random phase shift. The wave front becomes distorted, and randomly located regions of ray convergence and divergence are formed, in which the nonlinear evolution of the wave alters profoundly. The problem is solved in the approximation of geometrical acoustics. The ray pattern of a plane wave transmitted through the regular screen is constructed. The solution that describes the spatial structure of the field and the evolution of an arbitrary temporal wave profile behind the screen is obtained. Statistical characteristics of the discontinuity amplitude are calculated for different distances from the screen. A random modulation is shown to result in a faster (in comparison with the case of a homogeneous medium) nonlinear attenuation of the wave and in the smoothing of the shock profile. The distribution function of the wave field parameters becomes broader because of random focusing effects.  相似文献   

15.
A nonlinear evolution equation for wave propagation in bubbly liquids, taking into account viscosity and heat transfer, has been derived by Kudryashov and Sinelshchikov. In the case of no dissipation the authors have provided analytical solutions representing undistorted waves. These results are cast into a simpler form and studied in more detail. In addition to the wave profiles the corresponding phase curves are presented. Depending on some parameter the solutions represent solitary or periodic waves. Some of the periodic waves exhibit peaks or cusps. From the periodic waves a new type of “meandering” solutions is constructed.  相似文献   

16.
The theory of nonlinear interaction between two radiation modes as a pump waves and two guided modes: the input beam and the generated backward beam, is presented. In the degenerate case, for all waves at the same frequency, we demonstrate the possibility of the input wave amplification and the phase conjugate replica generation as well as of the interaction between modes of different polarization. The nondegenerate case, with the phase matching achieved by pump waves amplitude modulation is also considered.  相似文献   

17.
Nonlinear wave propagation in materials, where distribution function of mesoscopic mechanical elements has very different scales of variation along and normally to diagonal of Preisach-Mayergoyz space, is analyzed. An evolution equation for strain wave, which takes into account localization of element distribution near the diagonal and its slow variation along the diagonal, is proposed. The evolution equation provides opportunity to model propagation of elastic waves with strain amplitudes comparable to and even higher than characteristic scale of element localization near Preisach-Mayergoyz space diagonal. Analytical solutions of evolution equation predict nonmonotonous dependence of wave absorption on its amplitude in a particular regime. The regime of self-induced absorption for small-amplitude nonlinear waves is followed by the regime of self-induced transparency for high-amplitude waves. The developed theory might be useful in seismology, in high-pressure nonlinear acoustics, and in nonlinear acoustic diagnostics of damaged and fatigued materials.  相似文献   

18.
Rogue waves can be categorized as unexpectedly large waves, which are temporally and spatially localized. They have recently received much attention in the water wave context, and also been found in nonlinear optical fibers. In this paper, we examine the issue of whether rogue internal waves can be found in the ocean. Because large-amplitude internal waves are commonly observed in the coastal ocean, and are often modeled by weakly nonlinear long wave equations of the Korteweg-de Vries type, we focus our attention on this shallow-water context. Specifically, we examine the occurrence of rogue waves in the Gardner equation, which is an extended version of the Korteweg-de Vries equation with quadratic and cubic nonlinearity, and is commonly used for the modelling of internal solitary waves in the ocean. Importantly, we choose that version of the Gardner equation for which the coefficient of the cubic nonlinear term and the coefficient of the linear dispersive term have the same sign, as this allows for modulational instability. From numerical simulations of the evolution of a modulated narrow-band initial wave field, we identify several scenarios where rogue waves occur.  相似文献   

19.
Numerical simulation of nonlinear acoustics and shock waves in a weakly heterogeneous and lossless medium is considered. The wave equation is formulated so as to separate homogeneous diffraction, heterogeneous effects, and nonlinearities. A numerical method called heterogeneous one-way approximation for resolution of diffraction (HOWARD) is developed, that solves the homogeneous part of the equation in the spectral domain (both in time and space) through a one-way approximation neglecting backscattering. A second-order parabolic approximation is performed but only on the small, heterogeneous part. So the resulting equation is more precise than the usual standard or wide-angle parabolic approximation. It has the same dispersion equation as the exact wave equation for all forward propagating waves, including evanescent waves. Finally, nonlinear terms are treated through an analytical, shock-fitting method. Several validation tests are performed through comparisons with analytical solutions in the linear case and outputs of the standard or wide-angle parabolic approximation in the nonlinear case. Numerical convergence tests and physical analysis are finally performed in the fully heterogeneous and nonlinear case of shock wave focusing through an acoustical lens.  相似文献   

20.
利用双曲函数法得到ZKB方程的一组冲击波解,并对波在横向扰动下的动力学稳定性进行研究.对冲击波解进行线性稳定性分析,并构造高精度的有限差分格式求解所得本征值问题.结果表明:对于正耗散的情形,该冲击波在线性意义下稳定;对于负耗散情形,该冲击波在线性意义下不稳定.构造有限差分格式对受扰动的冲击波进行非线性动力学演化,结果表明:对于正耗散的情况,该冲击波是稳定的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号