首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Densities and viscosities of binary liquid mixtures of (1-hexanol  + n -hexane, or cyclohexane, or benzene) have been measured at a number of mole fractions at T =  (303, 313, and 323) K. The excess molar volume VmEand apparent molar volume Vφhave been calculated from the density data. TheVmE anddVmE / dT for the system, (1-hexanol  + n -hexane) have been found negative, while those for the systems, (1-hexanol  +  cyclohexane) and (1-hexanol  +  benzene), were found to be positive. Excess viscosities ηEcalculated from viscosity data, have been found to be negative over the whole composition range at the temperatures studied for all the three systems. Volumetric and viscometric behaviours indicate that dispersion is the major force of interaction between the components in (1-hexanol  +  cyclohexane, or benzene), while inclusion of hydrocarbon chains into the interstices of polymolecular ring structures of alcohol formed by hydrogen bonding has been assumed to play a significant role apart from dispersion in the system (1-hexanol  + n -hexane). Thermodynamic parameters of activation for viscous flow have been calculated from the viscosity data at different temperatures and a possible explanation suggested.  相似文献   

2.
2-Propoxyethanol (C3E1) is one of nonionic surfactants which are a particularly interesting class of substances due to both inter-molecular and intra-molecular association. Binary (vapor + liquid) equilibrium data were measured for {2-propoxyethanol (C3E1) + n-hexane} and {2-propoxyethanol (C3E1) + n-heptane} systems at temperatures ranging from (303.15 to 323.15) K. A static apparatus was used in this study. The experimental data were correlated well with a lattice fluid equation of state that combines the multi-fluid non-random lattice fluid model with Veytsman statistics for (intra + inter)-molecular association.  相似文献   

3.
The experimental (liquid + liquid) equilibrium (LLE) properties for two ternary systems containing (N-formylmorpholine + benzene + n-hexane), (sulfolane + benzene + n-hexane) and a quaternary mixed solvent system (sulfolane + N-formylmorpholine + benzene + n-hexane) were measured at temperature ranging from (298.15 to 318.15) K and at an atmospheric pressure. The experimental distribution coefficients and selectivity factors are presented to evaluate the efficiency of the solvents for extraction of benzene from n-hexane. The LLE results obtained indicate that increasing temperature decreases selectivity for all solvents. The LLE results for the systems studied were used to obtain binary interaction parameters in the UNIQUAC model by minimizing the root mean square deviations (RMSD) between the experimental and calculated results. Using the interaction parameters obtained, the phase equilibria in the systems were calculated and plotted. The calculated compositions based on the UNIQUAC model were found to be in good agreement with the experimental values. The result of the RMSD obtained by comparing the calculated and experimental two-phase compositions is 0.0163 for (N-formylmorpholine + benzene + n-hexane) system and is 0.0120 for (sulfolane + benzene + n-hexane) system.  相似文献   

4.
《Fluid Phase Equilibria》2005,227(1):87-96
Liquid–liquid equilibrium data of the solubility (binodal) curves and tie-line end compositions are presented for mixtures of [water (1) + formic acid or propanoic acid or levulinic (4-oxopentanoic) acid or valeric (pentanoic) acid or caproic (hexanoic) acid (2) + 1-octanol (3)] at 293.15 K and 101.3 ± 0.7 kPa. A log-basis approach SERLAS (solvation energy relation for liquid associated system) has been proposed to estimate the properties and liquid–liquid equilibria (LLE) of tertiary associated systems containing proton-donating and -accepting components capable of a physical interaction through hydrogen bonding. The model combines the solvatochromic parameters with the thermodynamic factors derived from the UNIFAC-Dortmund model. The reliability of the model has been analyzed against the LLE data with respect to the distribution ratio and separation factor. The tie-lines were also correlated using the UNIFAC-original model. The proposed model, reflecting the simultaneous impact of hydrogen bonding, solubility and thermodynamic factors, yields a mean error of 27.9% for all the systems considered.  相似文献   

5.
Measurements of equilibrium hydrogen pressure as a function of hydrogen content and of temperature are a convenient way to determine the thermodynamic properties of metal–hydrogen systems. To date such studies have only been carried out for the systems at relatively low hydrogen pressure. We have developed a high-pressure apparatus capable of pressures up to 1.2 GPa and temperatures up to T =  450 K for the studies of equilibrium conditions in the Ni–H systems and the Ni–D systems in order to derive corresponding enthalpies of formation and decomposition. The results show that although the pressures at given temperatures are always higher for (Ni  +  D2) than for (Ni  +  H2), the values of enthalpies are almost identical within the experimental error. The enthalpies of the formation and decomposition of both systems derived from these studies are compared with calorimetric measurements carried out at high pressure. The difference between enthalpies of formation and decomposition for both systems reflect hysteresis, a common phenomenon in transition metal hydrides.  相似文献   

6.
《Fluid Phase Equilibria》2005,235(2):127-138
A systematic study of the LLE for a number of aqueous solutions of n-alkyl polyglycol ethers (CiEj) with tail length i from 4 to 12 and head length j from 1 to 6 is presented. For calculation a new thermodynamic model was developed basing on the mass-action law and continuous thermodynamics. Besides the micellization the self association of water is taken into account. The resulting polydisperse mixture of micelles and water associates is described by two continuous aggregation-size distribution functions depending on temperature and surfactant concentration. The Gibbs energy of the mixture is calculated by the Flory-Huggins theory with a temparature dependent parameter χ. The model is applied to 13 water + CiEj systems with LCST behavior and to the three systems water + C4E1, water + C10E4 and water + C10E5 with closed-loop miscibility gaps. For the former 13 systems four parameters were fitted to the experimental equilibrium data. For the systems with closed-loop miscibility gaps two additional parameters were necessary, due two the more extended temperature range. The agreement between calculated and experimental data is very good for nearly all systems of both types.  相似文献   

7.
Vapour pressures of (tetrahydrofuran + 1,1,2,2-tetrachloroethane, or tetrachloroethene) at nine temperatures between T = 283.15 K and T = 323.15 K were measured by a static method. The reduction of the vapour pressures data to obtain activity coefficients and excess molar Gibbs energies was carried out by fitting the vapour pressure data to the Redlich–Kister polynomial according to Barker’s method. Excess molar volumes were also measured at T = 298.15 K. A comparative analysis about the thermodynamic behaviour of both systems is performed, in terms of hydrogen bonding and electron-donor–acceptor interactions, as well as the resonance effect in tetrachloroethene.  相似文献   

8.
Density, ρ, speed of sound, u, and refractive index, nD, at 298.15 K and atmospheric pressure have been measured over the entire composition range for (toluene + methyl acetate + butyl acetate) and (toluene + methyl acetate + methyl heptanoate) systems. Excess molar volumes, VE, isentropic compressibility, κs, isentropic compressibility deviations, Δκs, and changes of refractive index on mixing, ΔnD, for the above systems, have been calculated from experimental data and fitted to Cibulka, Singh et al., and Nagata and Sakura equations, standard deviations from the regression lines are shown. Geometrical solution models, Tsao and Smith, Kholer, Jacob and Fitzner, Rastogi et al. were also applied to predict ternary properties from binary contributions.  相似文献   

9.
Experimental (liquid + liquid) equilibrium data were obtained for the extraction of toluene from n-decane by mixed-solvents (ethanol + water) and (ethanol + methanol) at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure.The measured tie-line data for two quaternary mixtures of {(ethanol +  water) + toluene + n-decane} and {(ethanol + methanol) + toluene + n-decane} are presented. The experimental quaternary (liquid + liquid) equilibrium data have been correlated using the NRTL activity coefficient model to obtain the binary interaction parameters of these components. The NRTL models predict the equilibrium compositions of the quaternary mixtures with small deviations. The partition coefficients and the selectivity factor of the mixed-solvents used were calculated and presented. From our experimental and calculated results, we conclude that for the extraction of toluene from n-decane mixtures the mixed-solvent (ethanol + methanol) has a higher selectivity factor than the other mixed-solvent at the three temperatures studied.  相似文献   

10.
Molecular simulations of the (vapor + liquid) equilibria (VLE) for benzene, cyclohexane, and (benzene + hydrogen) and (cyclohexane + hydrogen) were carried out using the Gibbs-ensemble Monte Carlo method with configurational bias. The Buckingham exponential six (exp-6) potential was used for the site–site interactions with no binary interaction parameters; benzene and cyclohexane were described with six interaction sites, and hydrogen with a single site. Simulation results, density, pressure, and vaporization enthalpy for benzene and cyclohexane were in reasonable agreement with experimental data, but critical pressures obtained from extrapolation of the VLE results did not match the experimental values. For (benzene + hydrogen) and (cyclohexane + hydrogen) mixtures mole fractions from simulation were compared with experimental data, the results for liquid phase were in closer agreement with experiment than the results for vapor phase. For the mixtures, results from the PSRK equation of state (PSRK-EOS) predicted the mole fractions for both phases, also vapor densities from molecular simulation were in close agreement with PSRK-EOS. Additionally, the Henry’s law constant (KH) for hydrogen was calculated in separate simulations using test particle insertions, and qualitative agreement with values from experimental VLE data was obtained. For the (benzene + hydrogen) system KH results from PSRK-EOS were closer to experiment than the results from simulation, but, for the (cyclohexane + hydrogen) system results from both methods had similar deviations from experiment. The results for pure substance and mixtures indicate that the combination of the three molecular models used for benzene, cyclohexane, and hydrogen is valid for the simulation of the VLE of their mixtures.  相似文献   

11.
Isothermal (vapour + liquid) equilibrium data for the ternary mixtures 1-butanol + n-hexane + 1-chlorobutane and 2-butanol + n-hexane + 1-chlorobutane have been studied with a recirculating still at T = 298.15 K. The experimental data were satisfactorily checked for thermodynamic consistency using the method of van Ness. Activity coefficients and excess Gibbs function have been correlated with the Wilson equation. The GE values obtained for the two ternary systems are very similar.  相似文献   

12.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

13.
The (liquid + liquid) equilibrium (LLE) data for three ternary systems containing heptane, toluene, and a z-methyl-N-butylpyridinium tetrafluoroborate ionic liquid ([zbmpy][BF4] IL, where z = 2, 3, or 4) were determined at T = 313.2 K and atmospheric pressure. The effect of IL cation isomers on the LLE data was evaluated for the first time. The selectivity and extractive capacity from these LLE data were calculated and compared to those previously reported in the literature for the systems (heptane + toluene + [4bmpy][BF4]) and (heptane + toluene + sulfolane). The results show that the LLE data for the systems comprising the ILs with the metha- and para-substituted cations do not differ significantly from isomer to isomer. On the other hand, significant differences were observed among the systems with the ortho-substituted cation and the other two cation isomers. The degree of consistency of the experimental LLE data was ascertained by applying the Othmer–Tobias correlation. In addition, the LLE data were satisfactorily correlated by means of the thermodynamic NRTL model.  相似文献   

14.
During the last years, a large number of studies have evaluated the ability of ionic liquids (ILs) to separate aromatic from aliphatic hydrocarbons by liquid extraction. Nevertheless, in order to design a global process, a post-extraction step based on the aromatic recovery from the extract stream and the regeneration of the IL is required. Taking into account the negligible vapor pressure of the ILs, the use of separation units based on the difference of volatility among the components of the extract could be an appropriate way. However, that requires additional (vapor + liquid) equilibrium (VLE) data, which are scarce today. In this work, the isothermal VLE data for {n-heptane + toluene + 1-ethyl-3-methylimidazolium thiocyanate ([EMim][SCN])} and {n-heptane + toluene + 1-butyl-3-methylimidazolium thiocyanate ([BMim][SCN])} mixtures were experimentally measured at T = (323.2, 343.2 and 363.2) K over the whole composition range within the rich-IL miscibility region. For that, a static headspace gas chromatograph (HS-GC) was used. In addition, the non-random two liquids (NRTL) thermodynamic model was satisfactory applied to correlate the experimental VLE data.Finally, the effect of thiocyanate-based inorganic salts (AgSCN, Co(SCN)2 and CuSCN) on the phase behavior of the above mentioned mixtures were also analyzed through the experimental determination of the isothermal VLE of the pseudo-ternary systems {n-heptane + toluene + [EMim][SCN]/salt mixture}.The obtained results show that the use of pure thiocyanate-based ILs as entrainer increases the n-heptane relative volatility from toluene whereas the addition of inorganic salts has not led to an improvement of these results.  相似文献   

15.
Liquid–liquid equilibrium (LLE) data were determined for the quaternary systems of {(water + methanol or ethanol) + m-xylene + n-dodecane} at three temperatures 298.15, 303.15 and 313.15 K and atmospheric pressure. The composition of liquid phases at equilibrium was determined by gas–liquid chromatography and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of the solvent are calculated and compared. The phase diagrams for the quaternary systems including both the experimental and correlated tie lines are presented.  相似文献   

16.
《Fluid Phase Equilibria》2006,242(2):154-163
Phase equilibria, for the binary systems {n-alkanes (tridecane, octadecane, or eicosane), or cyclohexane, or 1-alkanol (1-hexadecanol, or 1-octadecanol, or 1-eicosanol) + 2,3-pentanedione} have been determined using a cryometric dynamic method at atmospheric pressure. The influence of pressure on liquidus curve up to 800 MPa was determined for (tridecane, or cyclohexane + 2,3-pentanedione) systems. A thermostated apparatus for the measurements of transition pressures from the liquid to the solid state in two component isothermal solutions (pressometry) was used. The freezing and melting temperatures at a constant composition increase monotonously with pressure. The high-pressure experimental results obtained at isothermal conditions (px) were interpolated to well known Tx diagrams.Immiscibility in the liquid phase was observed only for the n-alkanes mixtures. The solubility decreases with an increase of the number of carbon atoms in the n-alkane, or 1-alkanol chain. The higher intermolecular solute–solvent interaction was observed for the 1-alkanols.Experimental solubility results are compared with values calculated by means of the NRTL equation (n-alkanes) and the NRTL and UNIQUAC ASM equations utilizing parameters derived from SLE and LLE results. The existence of a solid–solid first-order phase transition in tridecane, eicosane and 1-alkanols has been taken into consideration in the calculations. The correlation of the solubility data has been obtained with the average root-mean-square deviation of temperature σ < 1.0 K with both equations. The pressure–temperature–composition relation of the high-pressure (solid + liquid) phase equilibria, was satisfactorily presented by the polynomial.  相似文献   

17.
The characteristics of host–guest complexation between water-soluble calix[n]arenesulfonates (CnS, n = 4, 6, 8) and butyl rhodamine B (BRB) were investigated by fluorescence spectrometry. Fluorescence spectroscopy experiments were performed in pH 8.0 Tris(3-aminomethane)–HCl buffer solution at different temperature to calculate the stability constants (KS) for the stoichiometric 1:1 inclusion complexes of C4S, C6S, and C8S with BRB. The complex stability constant monotonically increased with the number of phenolic units in the calixarene ring. The thermodynamic parameters at T = 298 K for the inclusion complexes were calculated through Van’t Hoff analysis. The inclusion complexes of CnS with BRB were driven by the favorable enthalpic changes, accompanying negative entropy changes. The stability constants were affected by the acidity of the solution. When pH was 8.0, the stability constants reached the maximum. The complex interaction was mainly attributed to the weak forces including electrostatic interaction and hydrogen bonding.  相似文献   

18.
Isothermal (vapor + liquid) equilibrium for the two binary systems (maleic anhydride + di-isobutyl hexahydrophthalate and maleic anhydride + di-n-butyl phthalate) at T = (413.2, 433.2, and 453.2) K were determined using the ebulliometric method. The parameters of the NRTL model for the two binary systems were obtained from the correlation of the experimental data.  相似文献   

19.
Densities, viscosities, refractive indices, and surface tensions of the ternary system (2-propanol + tetrahydropyran + 2,2,4-trimethylpentane) at T = 303.15 K and its constituent binary systems (2-propanol + tetrahydropyran, 2-propanol + 2,2,4-trimethylpentane, and tetrahydropyran + 2,2,4-trimethylpentane) at T = (293.15, 303.15, 313.15, and 323.15) K were measured at atmospheric pressure. Densities were determined using a vibrating-tube densimeter. Viscosities were measured with an automatic microviscometer based on the rolling-ball principle. Refractive indexes were measured using a digital Abbe-type refractometer. Surface tensions were determined by the Wilhelmy-plate method. From these data, excess molar volumes, deviations in viscosity, deviations in refractive index, and deviations in surface tension were calculated. The results for the binary and ternary systems were fitted to the Redlich–Kister equation and the variable-degree polynomials in terms of compositions, respectively. The experimental and calculated quantities are used to study the nature of mixing behaviour between mixture components.  相似文献   

20.
The enthalpies of solution and solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute–solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute–solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ · mol−1. The values of group contributions and corrections are strongly influenced by solvent properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号