首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulse modulated power electronic converters represent an important class of piecewise-smooth dynamical systems with a broad range of applications in modern power supply systems. The paper presents a detailed investigation of a number of unusual bifurcation phenomena that can occur in power converters with multilevel control. In the first example a closed invariant curve arises in a border-collision bifurcation as a period-6 saddle cycle collides with a stable fixed point of focus type and transforms it into an unstable focus point. The second example involves the formation of a structure of coexisting tori through the interplay between border-collision and global bifurcations. We examine the behavior of the system in the presence of two coexisting stable resonance tori and finally show how an existing torus can develop heteroclinic bubbles that connect the points of a stable resonance cycle with an external pair of saddle and focus cycles. The appearance of these structures is explained in terms of a sequence torus-birth bifurcations with pairs of stable and unstable tori folding one over the other.  相似文献   

2.
The purpose of this Letter is to show how a border-collision bifurcation in a piecewise-smooth dynamical system can produce a direct transition from a stable equilibrium point to a two-dimensional invariant torus. Considering a system of nonautonomous differential equations describing the behavior of a power electronic DC/DC converter, we first determine the chart of dynamical modes and show that there is a region of parameter space in which the system has a single stable equilibrium point. Under variation of the parameters, this equilibrium may collide with a discontinuity boundary between two smooth regions in phase space. When this happens, one can observe a number of different bifurcation scenarios. One scenario is the continuous transformation of the stable equilibrium into a stable period-1 cycle. Another is the transformation of the stable equilibrium into an unstable period-1 cycle with complex conjugate multipliers, and the associated formation of a two-dimensional (ergodic or resonant) torus.  相似文献   

3.
Numerical studies of higher-dimensional piecewise-smooth systems have recently shown how a torus can arise from a periodic cycle through a special type of border-collision bifurcation. The present article investigates this new route to quasiperiodicity in the two-dimensional piecewise-linear normal form map. We have obtained the chart of the dynamical modes for this map and showed that border-collision bifurcations can lead to the birth of a stable closed invariant curve associated with quasiperiodic or periodic dynamics. In the parameter regions leading to the existence of an invariant closed curve, there may be transitions between an ergodic torus and a resonance torus, but the mechanism of creation for the resonance tongues is distinctly different from that observed in smooth maps. The transition from a stable focus point to a resonance torus may lead directly to a new focus of higher periodicity, e.g., a period-5 focus. This article also contains a discussion of torus destruction via a homoclinic bifurcation in the piecewise-linear normal map. Using a dc-dc converter with two-level control as an example, we report the first experimental verification of the direct transition to quasiperiodicity through a border-collision bifurcation.  相似文献   

4.
Considering a set of two coupled nonautonomous differential equations with discontinuous right-hand sides describing the behavior of a DC/DC power converter, we discuss a border-collision bifurcation that can lead to the birth of a two-dimensional invariant torus from a stable node equilibrium point. We obtain the chart of dynamic modes and show that there is a region of parameter space in which the system has a single stable node equilibrium point. Under variation of the parameters, this equilibrium may disappear as it collides with a discontinuity boundary between two smooth regions in the phase space. The disappearance of the equilibrium point is accompanied by the soft appearance of an unstable focus period-1 orbit surrounded by a resonant or ergodic torus.Detailed numerical calculations are supported by a theoretical investigation of the normal form map that represents the piecewise linear approximation to our system in the neighbourhood of the border. We determine the functional relationships between the parameters of the normal form map and the actual system and illustrate how the normal form theory can predict the bifurcation behaviour along the border-collision equilibrium-torus bifurcation curve.  相似文献   

5.
The Letter describes different mechanisms for the formation and destruction of tori that are formed as layered structures of several sets of interlacing manifolds, each with their associated stable and unstable resonance modes. We first illustrate how a three layered torus can arise in a system of two coupled logistic maps through period-doubling or pitchfork bifurcations of the saddle cycle on an ordinary resonance torus. We hereafter present two different scenarios by which a multilayered torus can be destructed. One scenario involves a cascade of period-doubling bifurcations of both the stable and the saddle cycles, and the second scenario describes a transition in which homoclinic bifurcations destroy first the two outer layers and thereafter also the inner layer of a three-layered torus. It is suggested that the formation of multilayered tori is a generic phenomenon in non-invertible maps.  相似文献   

6.
The paper describes a number of new scenarios for the transition to chaos through the formation and destruction of multilayered tori in non-invertible maps. By means of detailed, numerically calculated phase portraits we first describe how three- and five-layered tori arise through period-doubling and/or pitchfork bifurcations of the saddle cycle on an ordinary resonance torus. We then describe several different mechanisms for the destruction of five-layered tori in a system of two linearly coupled logistic maps. One of these scenarios involves the destruction of the two intermediate layers of the five-layered torus through the transformation of two unstable node cycles into unstable focus cycles, followed by a saddle-node bifurcation that destroys the middle layer and a pair of simultaneous homoclinic bifurcations that produce two invariant closed curves with quasiperiodic dynamics along the sides of the chaotic set. Other scenarios involve different combinations of local and global bifurcations, including bifurcations that lead to various forms of homoclinic and heteroclinic tangles. We finally demonstrate that essentially the same scenarios can be observed both for a system of nonlinearly coupled logistic maps and for a couple of two-dimensional non-invertible maps that have previously been used to study the properties of invariant sets.  相似文献   

7.
It has been shown recently that torus formation in piecewise-smooth maps can occur through a special type of border collision bifurcation in which a pair of complex conjugate Floquet multipliers “jump” from the inside to the outside of the unit circle. It has also been shown that a large class of impacting mechanical systems yield piecewise-smooth maps with square-root singularity. In this Letter we investigate the dynamics of a two-dimensional piecewise-smooth map with square-root type nonlinearity, and describe two new routes to chaos through the destruction of two-frequency torus. In the first scenario, we identify the transition to chaos through the destruction of a loop torus via homoclinic bifurcation. In the other scenario, a change of structure in the torus occurs via heteroclinic saddle connections. Further parameter changes lead to a homoclinic bifurcation resulting in the creation of a chaotic attractor. However, this scenario is much more complex, with the appearance of a sequence of heteroclinic and homoclinic bifurcations.  相似文献   

8.
Considering a family of three-dimensional oscillators originating in the field of radio-engineering, the paper describes three different mechanisms of torus formation. Particular emphasis is paid to a process in which a saddle-node bifurcation eliminates a stable cycle and leaves the system to find a stationary state between a saddle cycle and a pair of equilibrium points of unstable focus/stable node and unstable node/stable focus type.  相似文献   

9.
We describe a transition from bursting to rapid spiking in a reduced mathematical model of a cerebellar Purkinje cell. We perform a slow-fast analysis of the system and find that-after a saddle node bifurcation of limit cycles-the full model dynamics temporarily follow a repelling branch of limit cycles. We propose that the system exhibits a dynamical phenomenon new to realistic, biophysical applications: torus canards.  相似文献   

10.
包伯成  许建平  刘中 《物理学报》2009,58(5):2949-2956
电流控制型Boost变换器在较宽的电路参数下具有两个边界,建立了采用斜坡补偿电流的分段光滑迭代映射方程,并导出了轨道状态发生转移时的分界线方程,通过数值仿真得到了输入电压和斜坡补偿斜率变化时的逆分岔图和它们的动力学行为分布图.研究结果表明,随着输入电压逐步减小,Boost变换器从稳定的周期1态,经在边界1上发生边界碰撞分岔后进入连续传导模式(CCM)下的鲁棒混沌态,并经在边界2上发生边界碰撞分岔后进入不连续传导模式(DCM)下的强阵发性的弱混沌态.通过引入合适的斜坡补偿电流,Boost变换器的工作模式可以 关键词: Boost变换器 斜坡补偿 迭代映射方程 镇定控制  相似文献   

11.
The Letter presents a number of new bifurcation structures that can be observed when a multi-dimensional period-doubling system is subjected to a periodic forcing. We show how multi-layered tori arise through transverse period-doubling bifurcations of the resonant saddle and node cycles, and how these multi-layered tori transform into period-doubled ergodic tori through sets of saddle-node bifurcations.  相似文献   

12.
杨科利 《物理学报》2015,64(12):120502-120502
研究了一类可变禁区不连续系统的加周期分岔行为, 发现由可变禁区导致不同类型的加周期分岔. 研究表明, 系统的迭代轨道和禁区的上下两个边界均可发生边界碰撞, 从而产生加周期分岔. 基于边界碰撞分岔理论, 定义基本的迭代单元, 解析推导出了相应的分岔曲线, 在全参数空间中给出了不同加周期所出现的范围. 与数值模拟结果比较, 理论分析结果与数值结果高度一致.  相似文献   

13.
Yu S  Lu J  Chen G 《Chaos (Woodbury, N.Y.)》2007,17(1):013118
This paper proposes a systematic methodology for creating multifolded torus chaotic attractors from a simple three-dimensional piecewise-linear system. Theoretical analysis shows that the multifolded torus chaotic attractors can be generated via alternative switchings between two basic linear systems. The theoretical design principle and the underlying dynamic mechanism are then further investigated by analyzing the emerging bifurcation and the stable and unstable subspaces of the two basic linear systems. A novel block circuit diagram is also designed for hardware implementation of 3-, 5-, 7-, 9-folded torus chaotic attractors via switching the corresponding switches. This is the first time a 9-folded torus chaotic attractor generated by an analog circuit has been verified experimentally. Furthermore, some recursive formulas of system parameters are rigorously derived, which is useful for improving hardware implementation.  相似文献   

14.
Oscillatory activity in the central nervous system is associated with various functions, like motor control, memory formation, binding, and attention. Quasiperiodic oscillations are rarely discussed in the neurophysiological literature yet they may play a role in the nervous system both during normal function and disease. Here we use a physical system and a model to explore scenarios for how quasiperiodic oscillations might arise in neuronal networks. An oscillatory system of two mutually inhibitory neuronal units is a ubiquitous network module found in nervous systems and is called a half-center oscillator. Previously we created a half-center oscillator of two identical oscillatory silicon (analog Very Large Scale Integration) neurons and developed a mathematical model describing its dynamics. In the mathematical model, we have shown that an in-phase limit cycle becomes unstable through a subcritical torus bifurcation. However, the existence of this torus bifurcation in experimental silicon two-neuron system was not rigorously demonstrated or investigated. Here we demonstrate the torus predicted by the model for the silicon implementation of a half-center oscillator using complex time series analysis, including bifurcation diagrams, mapping techniques, correlation functions, amplitude spectra, and correlation dimensions, and we investigate how the properties of the quasiperiodic oscillations depend on the strengths of coupling between the silicon neurons. The potential advantages and disadvantages of quasiperiodic oscillations (torus) for biological neural systems and artificial neural networks are discussed.  相似文献   

15.
We study the recently observed phenomena of torus canards. These are a higher-dimensional generalization of the classical canard orbits familiar from planar systems and arise in fast-slow systems of ordinary differential equations in which the fast subsystem contains a saddle-node bifurcation of limit cycles. Torus canards are trajectories that pass near the saddle-node and subsequently spend long times near a repelling branch of slowly varying limit cycles. In this article, we carry out a study of torus canards in an elementary third-order system that consists of a rotated planar system of van der Pol type in which the rotational symmetry is broken by including a phase-dependent term in the slow component of the vector field. In the regime of fast rotation, the torus canards behave much like their planar counterparts. In the regime of slow rotation, the phase dependence creates rich torus canard dynamics and dynamics of mixed mode type. The results of this elementary model provide insight into the torus canards observed in a higher-dimensional neuroscience model.  相似文献   

16.
Physical and computer experiments involving systems describable by piecewise smooth continuous maps that are nondifferentiable on some surface in phase space exhibit novel types of bifurcations in which an attracting fixed point exists before and after the bifurcation. The striking feature of these bifurcations is that they typically lead to "unbounded behavior" of orbits as a system parameter is slowly varied through its bifurcation value. This new type of border-collision bifurcation is fundamental and robust. A method that prevents such "dangerous border-collision bifurcations" is given. These bifurcations may be found in a variety of experiments including circuits.  相似文献   

17.
吴松荣  何圣仲  许建平  周国华  王金平 《物理学报》2013,62(21):218403-218403
在断续导电模式下, 建立了电压型双频率控制开关变换器的动力学模型, 并推导了相应的特征值方程. 根据动力学模型, 采用分岔图研究了电路参数变化时变换器存在的边界碰撞分岔行为和周期2, 周期3,周期4等多周期行为, 结果表明: 变换器经历了周期1态、多周期态、周期1态的分岔路由; 周期态的转变均是由边界碰撞分岔引起的. 根据特征值方程, 采用Lyapunov指数研究了变换器的稳定性, 结果表明: 随着电路参数的变化, Lyapunov指数始终小于零, 变换器一直工作于稳定的周期态, 验证了电压型双频率控制开关变换器的周期3行为并不意味着变换器会必然发生混沌. 通过电路仿真, 分析了负载变化时变换器的时域波形、相轨图和频谱图, 验证了动力学模型的可行性和理论分析的正确性. 实验结果验证了文中的仿真结果. 关键词: 开关变换器 双频率控制 边界碰撞分岔 多周期行为  相似文献   

18.
We consider here a nonsmooth noninvertible map and report new route to chaos from a resonance loop torus which is not homeomorphic to circle but only endomorphic to it. We have found that cusp torus cannot develop before the onset of chaos, though the loop torus appears. The destruction of the loop torus occurs through homoclinic bifurcation in the presence of an infinite number of nonsmooth loops. We show that owing to the nonsmooth noninvertible nature of the map, the stable sets can bifurcate to form nonsmooth closed loops. However, that cannot be interpreted directly as basin bifurcation.  相似文献   

19.
沙金  包伯成  许建平  高玉 《物理学报》2012,61(12):120501-120501
通过建立一个开关周期内输出电容电荷变化量对应的输出电压变化量, 建立了工作于电感电流断续模式(discontinuous conduction mode, DCM)的脉冲序列(pulse train, PT)控制Buck变换器的近似离散时间模型, 研究了负载电阻及输入电压变化时PT控制DCM Buck变换器的边界碰撞分岔行为. 通过构造相应的迭代映射曲线, 分别分析了不同负载电阻时PT控制DCM Buck变换器的周期1、周期2和周期3运行轨迹的不动点稳定性, 揭示了PT控制DCM Buck变换器在不同周期态时的边界碰撞分岔的形成机理. 研究结果表明, 随参数变化, PT控制DCM Buck变换器始终运行在不同的周期态, 各周期态的切换由边界碰撞分岔引起, 李雅谱诺夫指数始终小于零. 利用PSIM电路仿真软件, 给出了不同负载电阻时的时域波形和相轨图. 实验结果验证了理论分析和仿真结果的正确性, 同时说明了本文动力学建模的可行性.  相似文献   

20.
One-degree of freedom conservative slowly varying Hamiltonian systems are analyzed in the case in which a saddle-center pair undergo a transcritical bifurcation. We analyze the case in which the method of averaging predicts the solution crosses the unperturbed homoclinic orbit at the precise time at which the transcritical bifurcation occurs. For the slow passage through the nonhyperbolic homoclinic orbit associated with a transcritical bifurcation, the solution consists of a large sequence of nonhyperbolic homoclinic orbits surrounded by autonomous nonlinear saddle approaches. The change in action is computed by matching these solutions to those obtained by averaging, valid before and after crossing the nonhyperbolic homoclinic orbit. For initial conditions near the stable manifold of the nonhyperbolic saddle point, one saddle approach has particularly small energy and instead satisfies a nonautonomous nonlinear equation, which provides a transition between nonhyperbolic homoclinic orbits, centers, and saddles. (c) 2000 American Institute of Physics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号