首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, a new multilevel correction scheme is proposed to solve Stokes eigenvalue problems by the finite element method. This new scheme contains a series of correction steps, and the accuracy of eigenpair approximation can be improved after each step. In each correction step, we only need to solve a Stokes problem on the corresponding fine finite element space and a Stokes eigenvalue problem on the coarsest finite element space. This correction scheme can improve the efficiency of solving Stokes eigenvalue problems by the finite element method. As applications of this multilevel correction method, a multigrid method and an adaptive finite element technique are introduced for Stokes eigenvalue problems. Some numerical results are given to validate our schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
This article is devoted to the study of a hybrid numerical scheme for a class of singularly perturbed parabolic convection-diffusion problems with discontinuous convection coefficients. In general, the solutions of this class of problems possess strong interior layers. To solve these problems, we discretize the time derivative by the backward-Euler method and the spatial derivatives by a hybrid finite difference scheme (a proper combination of the midpoint upwind scheme in the outer regions and the classical central difference scheme in the interior layer regions) on a layer resolving piecewise-uniform Shishkin mesh. It is proved that the method converges uniformly in the discrete supremum norm with almost second-order spatial accuracy. Moreover, an optimal order of convergence (up to a logarithmic factor) is obtained inside the layer regions. Extensive numerical experiments are conducted to support the theoretical results and also, to demonstrate the accuracy of this method.  相似文献   

3.
对流扩散方程的经济差分格式   总被引:21,自引:0,他引:21  
程爱杰  赵卫东 《计算数学》2000,22(3):309-318
1.引言 对流扩散方程是一类基本的运动方程,它可描述质量、热量的输运过程以及反应扩散过程等众多物理现象.寻找稳定、快速实用的数值方法,有着重要的理论和实际意义.标准的差分方法或有限元方法对它常常失效,根本原因在于“对流项”的存在.[1]提出了解对流扩散方程的特征线修正技术,这一方法考虑沿着特征线(流动方向)的离散,利用了对流扩散问题的物理力学性质,可以有效地克服数值振荡,保证数值解的稳定,尤其对“对流占优”的问题,这一方法有突出的优越性.这方面已有大量的理论和应用研究成果[2,3,7].对大规模…  相似文献   

4.
In this paper, we propose and analyze a fully discrete local discontinuous Galerkin (LDG) finite element method for time-fractional fourth-order problems. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. Stability is ensured by a careful choice of interface numerical fluxes. We prove that our scheme is unconditional stable and convergent. Numerical examples are shown to illustrate the efficiency and accuracy of our scheme.  相似文献   

5.
We present a simple and effective scheme for forming iterative methods of various convergence orders. In this scheme, methods of various convergence orders, such as four, six, eight and ten, are formed through a modest modification of the classical Newton method. Since the scheme considered is a simple modification of the Newton method, it can be easily implemented in existing software packages, which is also suggested by the presented pseudocodes. Finally some problems are solved, to very high precision, through the proposed scheme. Numerical work suggests that the presented scheme requires less number of function evaluations for convergence and it may be suitable in high precision computing.  相似文献   

6.
The multidomain Legendre-Galerkin least-squares method is developed for solving linear differential problems with variable coefficients. By introducing a flux, the original differential equation is rewritten into an equivalent first-order system, and the Legendre Galerkin is applied to the discrete form of the corresponding least squares function. The proposed scheme is based on the Legendre-Galerkin method, and the Legendre/Chebyshev-Gauss-Lobatto collocation method is used to deal with the variable coefficients and the right hand side terms. The coercivity and continuity of the method are proved and the optimal error estimate in $H^1$-norm is obtained. Numerical examples are given to validate the efficiency and spectral accuracy of our scheme. Our scheme is also applied to the numerical solutions of the parabolic problems with discontinuous coefficients and the two-dimensional elliptic problems with piecewise constant coefficients, respectively.  相似文献   

7.
In this article, we develop a combined finite element‐weighted upwind finite volume method for convection‐dominated diffusion problems in two dimensions, which discretizes the diffusion term with the standard finite element scheme, and the convection and source terms with the weighted upwind finite volume scheme. The developed method leads to a totally new scheme for convection‐dominated problems, which overcomes numerical oscillation, avoids numerical dispersion, and has high‐order accuracy. Stability analyses of the scheme are given for the problems with constant coefficients. Numerical experiments are presented to illustrate the stability and optimal convergence of our proposed method. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 799–818, 2016  相似文献   

8.
We propose a new well-balanced central finite volume scheme for the Ripa system both in one and two space dimensions. The Ripa system is a nonhomogeneous hyperbolic system with a non-zero source term that is obtained from the shallow water equations system by incorporating horizontal temperature gradients. The proposed numerical scheme is a second-order accurate finite volume method that evolves a non-oscillatory numerical solution on a single grid, avoids the process of solving Riemann problems arising at the cell interfaces, and follows a well-balanced discretization that ensures the steady state requirement by discretizing the geometrical source term according to the discretization of the flux terms. Furthermore the proposed scheme mimics the surface gradient method and discretizes the water height according to the discretization of the water level. The proposed scheme is then applied and classical one and two-dimensional Ripa problems with flat or variable bottom topographies are successfully solved. The obtained numerical results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential and efficiency of the proposed method.  相似文献   

9.
The discrete mollification method is a convolution‐based filtering procedure suitable for the regularization of ill‐posed problems and for the stabilization of explicit schemes for the solution of PDEs. This method is applied to the discretization of the diffusive terms of a known first‐order monotone finite difference scheme [Evje and Karlsen, SIAM J Numer Anal 37 (2000) 1838–1860] for initial value problems of strongly degenerate parabolic equations in one space dimension. It is proved that the mollified scheme is monotone and converges to the unique entropy solution of the initial value problem, under a CFL stability condition which permits to use time steps that are larger than with the unmollified (basic) scheme. Several numerical experiments illustrate the performance and gains in CPU time for the mollified scheme. Applications to initial‐boundary value problems are included. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 38–62, 2012  相似文献   

10.
In this paper, a parallel asynchronous information algorithm for solving multidimensional Lipschitz global optimization problems, where times for evaluating the objective function can be different from point to point, is proposed. This method uses the nested optimization scheme and a new parallel asynchronous global optimization method for solving core univariate subproblems generated by the nested scheme. The properties of the scheme related to parallel computations are investigated. Global convergence conditions for the new method and theoretical conditions of speed up, which can be reached by using asynchronous parallelization in comparison with the pure sequential case, are established. Numerical experiments comparing sequential, synchronous, and asynchronous algorithms are also reported.  相似文献   

11.
Janis Rimshans  Sharif Guseynov 《PAMM》2007,7(1):2020059-2020060
On the base of our numerical propagator method a new finite volume difference scheme is proposed for solution of linear initial-boundary value problems. Stability of the scheme is investigated taking into account the obtained analytical solution of the initial-boundary value problems. It is shown that stability restrictions for the propagator scheme become weaker in comparison to traditional semi-implicit difference schemes. There are some regions of coefficients, for which the elaborated propagator difference scheme becomes absolutely stable. It is proven that the scheme is unconditionally monotonic. Analytical solutions, which are consistent with solubility conditions of the problem are formulated for the case of constant coefficients of parabolic equation by using Green function approach. Solubility of the linear initial-boundary value problem with Newton boundary conditions containing lower order derivatives is discussed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
徐琛梅  菅帅  王波 《应用数学》2012,25(3):570-576
本文首先对一类变系数微分方程建立有限差分格式.然后利用矩阵的特征值和范数理论,讨论该格式解的收敛性和唯一性.通过数值算例,说明该格式既有效又便于模拟.并且文中所用方法还能用于高阶微分方程和某些非线性微分方程问题的研究.  相似文献   

13.
In this paper, a quadrature-free scheme of spline method for two-dimensional Navier- Stokes equation is derived, which can dramatically improve the efficiency of spline method for fluid problems proposed by Lai and Wenston(2004). Additionally, the explicit formulation for boundary condition with up to second order derivatives is presented. The numerical simulations on several benchmark problems show that the scheme is very efficient.  相似文献   

14.
We introduce a type of full multigrid method for the nonlinear eigenvalue problem. The main idea is to transform the solution of the nonlinear eigenvalue problem into a series of solutions of the corresponding linear boundary value problems on the sequence of finite element spaces and nonlinear eigenvalue problems on the coarsest finite element space. The linearized boundary value problems are solved by some multigrid iterations. Besides the multigrid iteration, all other efficient iteration methods for solving boundary value problems can serve as the linear problem solver. We prove that the computational work of this new scheme is truly optimal, the same as solving the linear corresponding boundary value problem. In this case, this type of iteration scheme certainly improves the overfull efficiency of solving nonlinear eigenvalue problems. Some numerical experiments are presented to validate the efficiency of the new method.  相似文献   

15.
A backward Euler alternating direction implicit (ADI) difference scheme is formulated and analyzed for the three‐dimensional fractional evolution equation. In our method, the Riemann‐Liouville fractional integral term is treated by means of first order convolution quadrature suggested by Lubich. Meanwhile, an ADI technique is adopted to reduce the multidimensional problem to a series of one‐dimensional problems. A fully discrete difference scheme is constructed with space discretization by finite difference method. Two new inner products and corresponding norms are defined to analyze the scheme. The verification of stability and convergence is based on the nonnegative character of the real quadratic form associated with the convolution quadrature. Numerical experiments are reported to demonstrate the efficiency of our scheme.  相似文献   

16.
In this paper, we present an efficient numerical algorithm for approximate solutions of fourth-order boundary values problems with twopoint boundary conditions. The Adomian decomposition method and a modified form of this method are applied to construct the numerical solution. The scheme is tested on one linear problem and two nonlinear problems. The obtained results demonstrate the applicability and efficiency of the proposed scheme.  相似文献   

17.
In this paper, a modified Steffensen's type iterative scheme for the numerical solution of a system of nonlinear equations is studied. Two convergence theorems are presented. The numerical solution of boundary-value problems by the multiple shooting method using the proposed iterative scheme is analyzed.  相似文献   

18.
讨论美式期权定价的有限体积法.采用投影超松弛迭代法求解隐式欧拉和CrankNicolson有限体积格式离散Black-Scholes偏微分方程得到的线性互补问题.数值实验结果表明,两种有限体积格式都是有效的,而Crank-Nicolson格式的数值效果要优于隐式欧拉格式.  相似文献   

19.
In this paper, we consider the characteristic finite difference streamline diffusion method for two-dimensional convection-dominated diffusion problems. The scheme is combined the method of characteristics with the finite difference streamline diffusion (FDSD) method to create the characteristic FDSD (C-FDSD) procedures. Stability analysis and error estimate of the C-FDSD method are deduced. The scheme not only realizes the purpose of lowering the time-truncation error, using larger time step for solving the convection-dominated diffusion problems, but also keeps the favorable stability and high precision of the FDSD method. Finally, numerical experiments are presented to illustrate the availability of the scheme.  相似文献   

20.
In the present paper, a numerical method is proposed for the numerical solution of a coupled system of viscous Burgers’ equation with appropriate initial and boundary conditions, by using the cubic B-spline collocation scheme on the uniform mesh points. The scheme is based on Crank–Nicolson formulation for time integration and cubic B-spline functions for space integration. The method is shown to be unconditionally stable using von-Neumann method. The accuracy of the proposed method is demonstrated by applying it on three test problems. Computed results are depicted graphically and are compared with those already available in the literature. The obtained numerical solutions indicate that the method is reliable and yields results compatible with the exact solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号