首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a quasistatic frictional contact problem between a piezoelectric body and a foundation. The contact is modeled with normal compliance and friction is modeled with a general version of Coulomb's law of dry friction; the process is quasistatic and the material's behavior is described by an electro-viscoelastic constitutive law with damage. We derive a variational formulation for the model which is in the form of a system involving the displacement field, the electric potential field, and the damage field. Then we provide the existence of a unique weak solution to the model. The proof is based on arguments of evolutionary variational inequalities and fixed point.  相似文献   

2.
Energy-conserving algorithms are necessary to solve nonlinear elastodynamic problems in order to recover long term time integration accuracy and stability. Furthermore, some physical phenomena (such as friction) can generate dissipation; then in this work, we present and analyse two energy-consistent algorithms for hyperelastodynamic frictional contact problems which are characterised by a conserving behaviour for frictionless impacts but also by an admissible frictional dissipation phenomenon. The first approach permits one to enforce, respectively, the Kuhn–Tucker and persistency conditions during each time step by combining an adapted continuation of the Newton method and a Lagrangean formulation. In addition the second method which is based on the work in [P. Hauret, P. Le Tallec, Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact, Comput. Methods Appl. Mech. Eng. 195 (2006) 4890–4916] represents a specific penalisation of the unilateral contact conditions. Some numerical simulations are presented to underscore the conservative or dissipative behaviour of the proposed methods.  相似文献   

3.
Several fixed point strategies and Uzawa algorithms (for classical and augmented Lagrangian formulations) are presented to solve the unilateral contact problem with Coulomb friction. These methods are analysed, without introducing any regularization, and a theoretical comparison is performed. Thanks to a formalism coming from convex analysis, some new fixed point strategies are presented and compared with known methods. The analysis is first performed on continuous Tresca problem and then on the finite dimensional Coulomb problem derived from an arbitrary finite element method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
We consider a quasistatic contact problem for an electro-viscoelastic body. The contact is frictional and bilateral with a moving rigid foundation which results in the wear of the contacting surface. The damage of the material caused by elastic deformation is taken into account, its evolution is described by an inclusion of parabolic type. We present a weak formulation for the model and establish existence and uniqueness results. The proofs are based on classical results for elliptic variational inequalities, parabolic inequalities and fixed point arguments.  相似文献   

5.
6.
We study a mathematical model which describes the antiplane shear deformations of a cylinder in frictional contact with a rigid foundation. The process is static, the material behavior is described with a linearly elastic constitutive law and friction is modeled with a general slip dependent subdifferential boundary condition. We derive a variational formulation of the model which is in a form of a hemivariational inequality for the displacement field. Then we prove the existence of a weak solution to the model and, under additional assumptions, its uniqueness. The proofs are based on abstract results for operator inclusions in Banach spaces. Finally, we present concrete examples of friction laws for which our results are valid.  相似文献   

7.
We study a mathematical model which describes the antiplane shear deformations of a cylinder in frictional contact with a rigid foundation. The process is dynamic, the material behavior is described with a linearly viscoelastic constitutive law and friction is modeled with a general subdifferential boundary condition. We derive a variational formulation of the model which is in a form of an evolutionary hemivariational inequality for the displacement field. Then we prove the existence of a weak solution to the model. The proof is based on an abstract result for second order evolutionary inclusions in Banach spaces. Also, we prove that, under additional assumptions, the weak solution to the model is unique. We complete our results with concrete examples of friction laws for which our results are valid.  相似文献   

8.
We consider a mathematical model which describes the quasistatic contact between a viscoelastic body and a foundation. The material’s behaviour is modelled with a constitutive law with long memory. The contact is frictional and is modelled with normal compliance and memory term, associated to the Coulomb’s law of dry friction. We present the classical formulation of the problem, list the assumptions on the data and derive a variational formulation of the model. Then we prove the unique weak solvability of the problem. The proof is based on arguments of history-dependent variational inequalities. We also study the dependence of the weak solution with respect to the data and prove a convergence result.  相似文献   

9.
We consider a quasistatic problem which models the bilateral contact between a viscoelastic body and a foundation, taking into account the damage and the friction. The damage which results from tension or compression is then involved in the constitutive law and it is modelled using a nonlinear parabolic inclusion. The variational problem is formulated as a coupled system of evolutionary equations for which we state the existence of a unique solution. Then, we introduce a fully discrete scheme using the finite element method to approximate the spatial variable and the Euler scheme to discretize the time derivatives. Error estimates are derived and, under suitable regularity hypotheses, the convergence of the numerical scheme obtained. Finally, a numerical algorithm and results are presented for some two-dimensional examples.  相似文献   

10.
We consider control problems for a mathematical model describing the frictional bilateral contact between a piezoelectric body and a foundation. The material’s behavior is modeled with a linear electro–elastic constitutive law, the process is static and the foundation is assumed to be electrically conductive. Both the friction and the electrical conductivity conditions on the contact surface are described with the Clarke subdifferential boundary conditions. The weak formulation of the problem consists of a system of two hemivariational inequalities. We provide the results on existence and uniqueness of a weak solution to the model and, under additional assumptions, the continuous dependence of a solution on the data. Finally, for a class of optimal control problems and inverse problems, we prove the existence of optimal solutions.  相似文献   

11.
The existence of solutions to quasistatic frictional contact problems with limited interpenetration with an ahead prescribed bound is proved here. If the depth of the interpenetration tends to zero, then there are some sequence of solutions of such problems and a solution of the corresponding Signorini contact problem such that it is the limit of the sequence.  相似文献   

12.
We survey recent results on the mathematical modeling of nonconvex and nonsmooth contact problems arising in mechanics and engineering. The approach to such problems is based on the notions of an operator subdifferential inclusion and a hemivariational inequality, and focuses on three aspects. First we report on results on the existence and uniqueness of solutions to subdifferential inclusions. Then we discuss two classes of quasi-static hemivariational ineqaulities, and finally, we present ideas leading to inequality problems with multivalued and nonmonotone boundary conditions encountered in mechanics.  相似文献   

13.
We consider a mathematical model which describes the static frictional contact between a piezoelectric body and a foundation. The material behavior is described with a nonlinear electro‐elastic constitutive law. The novelty of the model consists in the fact that the foundation is assumed to be electrically conductive and both the frictional contact and the conductivity on the contact surface are described with subdifferential boundary conditions which involve a fully coupling between the mechanical and electrical variables. We derive a variational formulation of the problem which is in the form of a system coupling two hemivariational inequalities for the displacement and the electric potential fields, respectively. Then we prove the existence of a weak solution to the model and, under additional assumptions, its uniqueness. The proofs are based on recent results for inclusions of subdifferential type in Sobolev spaces (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We consider a problem in the inelastic deformation theory with a quasistatic deformation process of the gradient‐monotone type. We assume that the body has contact with a rigid foundation: the body moves on the foundation with friction. The frictional contact is modelled by a velocity‐dependent dissipation functional. This makes an evolution problem with two nonlinear monotone operators. We consider the gradient‐monotone inelastic constitutive function with a rapid growth at infinity. This leads us to a nonreflexive Orlicz space as an operational base. The frictional dissipation potential brings about a minimalization problem in this nonreflexive Orlicz space. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
We examine a mathematical model that describes a quasistatic adhesive contact between a viscoplastic body and deformable foundation. The material’s behaviour is described by the rate-type constitutive law which involves functions with a non-polynomial growth. The contact is modelled by the normal compliance condition with limited penetration and adhesion, a subdifferential friction condition also depending on adhesion, and the evolution of bonding field is governed by an ordinary differential equation. We present the variational formulation of this problem which is a system of an almost history-dependent variational–hemivariational inequality for the displacement field and an ordinary differential equation for the bonding field. The results on existence and uniqueness of solution to an abstract almost history-dependent inclusion and variational–hemivariational inequality in the reflexive Orlicz–Sobolev space are proved and applied to the adhesive contact problem.  相似文献   

16.
We consider a mathematical model which describes the frictional contact between an electro-elastic–visco-plastic body and a conductive foundation. The contact is modelled with normal compliance and a version of Coulomb’s law of dry friction, in which the stiffness and the friction coefficients depend on the electric potential. We derive a variational formulation of the problem and we prove an existence and uniqueness result. The proof is based on a recent existence and uniqueness result on history-dependent quasivariational inequalities obtained in [15]. Then we introduce a fully discrete scheme for solving the problem and, under certain solution regularity assumptions, we derive an optimal order error estimate. Finally, we present some numerical results in the study of a two-dimensional test problem which describes the process of contact in a microelectromechanical switch.  相似文献   

17.
We consider a quasistatic contact problem between a viscoplasticbody and an obstacle, the so-called foundation. The contactis modelled with normal compliance and the associated versionof Coulomb's law of dry friction. We derive a variational formulationof the problem and, under a smallness assumption on the normalcompliance functions, we establish the existence of a weak solutionto the model. The proof is carried out in several steps. Itis based on a time-discretization method, arguments of monotonicityand compactness, Banach fixed point theorem and Schauder fixedpoint theorem.  相似文献   

18.
In this work, we consider two frictionless contact problems between an elastic-piezoelectric body and an obstacle. The linear elastic-piezoelectric constitutive law is employed to model the piezoelectric material and either the Signorini condition (if the obstacle is rigid) or the normal compliance condition (if the obstacle is deformable) are used to model the contact. The variational formulations are derived in a form of a coupled system for the displacement and electric potential fields. An existence and uniqueness result is recalled. Then, a discrete scheme is introduced based on the finite element method to approximate the spatial variable. Error estimates are derived on the approximate solutions and, as a consequence, the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, some two-dimensional examples are presented to demonstrate the performance of the algorithm.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号