首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consider the problem of maximizing the toll revenue collected on a multi-commodity transportation network. This fits a bilevel framework where a leader sets tolls, while users respond by selecting cheapest paths to their destination. We propose novel formulations of the problem, together with valid inequalities yielding improved algorithms.  相似文献   

2.
In this paper, we design a numerical algorithm for solving a simple bilevel program where the lower level program is a nonconvex minimization problem with a convex set constraint. We propose to solve a combined problem where the first order condition and the value function are both present in the constraints. Since the value function is in general nonsmooth, the combined problem is in general a nonsmooth and nonconvex optimization problem. We propose a smoothing augmented Lagrangian method for solving a general class of nonsmooth and nonconvex constrained optimization problems. We show that, if the sequence of penalty parameters is bounded, then any accumulation point is a Karush-Kuch-Tucker (KKT) point of the nonsmooth optimization problem. The smoothing augmented Lagrangian method is used to solve the combined problem. Numerical experiments show that the algorithm is efficient for solving the simple bilevel program.  相似文献   

3.
In this note, we analyze a bilevel interdiction problem, where the follower’s program is a parametrized continuous knapsack. Based on the structure of the problem and an inverse optimization strategy, we propose for its solution an algorithm with worst-case complexity O(n2).  相似文献   

4.
论文研究了一种双层规划的光滑化目标罚函数算法,在一些条件下,证明了光滑化罚优化问题等价于原双层规划问题,而且,当下层规划问题是凸规划问题时, 给出了一个求解算法和收敛性证明.  相似文献   

5.
This paper is concerned with the characterization of optimal strategies for a service firm acting in an oligopolistic environment. The decision problem is formulated as a leader–follower game played on a transportation network, where the leader firm selects a revenue-maximizing price schedule that takes explicitly into account the rational behavior of the customers. In the context of our analysis, the follower’s problem is associated with a competitive network market involving non atomic customer groups. The resulting bilevel model can therefore be viewed as a model of product differentiation subject to structural network constraints.  相似文献   

6.
《Optimization》2012,61(5):789-798
In this article, we give necessary optimality conditions for a bilevel optimization problem (P). An intermediate single-level problem (Q), which is equivalent to the bilevel optimization problem (P), has been introduced.  相似文献   

7.
A neural network is proposed for solving a convex quadratic bilevel programming problem. Based on Lyapunov and LaSalle theories, we prove strictly an important theoretical result that, for an arbitrary initial point, the trajectory of the proposed network does converge to the equilibrium, which corresponds to the optimal solution of a convex quadratic bilevel programming problem. Numerical simulation results show that the proposed neural network is feasible and efficient for a convex quadratic bilevel programming problem.  相似文献   

8.
In this study, a heuristic free from parameter tuning is introduced to solve the vehicle routing problem (VRP) with two conflicting objectives. The problem which has been presented is the designing of optimal routes: minimizing both the number of vehicles and the maximum route length. This problem, even in the case of its single objective form, is NP-hard. The proposed self-tuning heuristic (STH) is based on local search and has two parameters which are updated dynamically throughout the search process. The most important advantage of the algorithm is the application convenience for the end-users. STH is tested on the instances of a multi-objective problem in school bus routing and classical vehicle routing. Computational experiments, when compared with the prior approaches proposed for the multi-objective routing of school buses problem, confirm the effectiveness of STH. STH also finds high-quality solutions for multi-objective VRPs.  相似文献   

9.
Max-Cut is a famous NP-hard problem in combinatorial optimization. In this article, we propose a Lagrangian smoothing algorithm for Max-Cut, where the continuation subproblems are solved by the truncated Frank-Wolfe algorithm. We establish practical stopping criteria and prove that our algorithm finitely terminates at a KKT point, the distance between which and the neighbour optimal solution is also estimated. Additionally, we obtain a new sufficient optimality condition for Max-Cut. Numerical results indicate that our approach outperforms the existing smoothing algorithm in less time.  相似文献   

10.
In this paper, we present a smoothing sequential quadratic programming to compute a solution of a quadratic convex bilevel programming problem. We use the Karush-Kuhn-Tucker optimality conditions of the lower level problem to obtain a nonsmooth optimization problem known to be a mathematical program with equilibrium constraints; the complementary conditions of the lower level problem are then appended to the upper level objective function with a classical penalty. These complementarity conditions are not relaxed from the constraints and they are reformulated as a system of smooth equations by mean of semismooth equations using Fisher-Burmeister functional. Then, using a quadratic sequential programming method, we solve a series of smooth, regular problems that progressively approximate the nonsmooth problem. Some preliminary computational results are reported, showing that our approach is efficient.  相似文献   

11.
We propose an efficient dynamic programming algorithm for solving a bilevel program where the leader controls the capacity of a knapsack, and the follower solves the resulting knapsack problem. We propose new recursive rules and show how to solve the problem as a sequence of two standard knapsack problems.  相似文献   

12.
We construct a fast algorithm with time complexity O(nlogn) for a continuous bilevel knapsack problem with interdiction constraints for n items. This improves on a recent algorithm from the literature with quadratic time complexity O(n2).  相似文献   

13.
This paper presents a local-search heuristic, based on the simulated annealing (SA) algorithm for a modified bin-packing problem (MBPP). The objective of the MBPP is to assign items of various sizes to a fixed number of bins, such that the sum-of-squared deviation (across all bins) from the target bin workload is minimized. This problem has a number of practical applications which include the assignment of computer jobs to processors, the assignment of projects to work teams, and infinite-loading machine scheduling problems. The SA-based heuristic we developed uses a morph-based search procedure when looking for better allocations. In a large computational study we evaluated 12 versions of this new heuristic, as well as two versions of a previously published SA-based heuristic that used a completely random search. The primary performance measure for this evaluation was the mean percent above the best known objective value (MPABKOV). Since the MPABKOV associated with the best version of the random-search SA heuristic was more than 290 times larger than that of the best version of the morph-based SA heuristic, we conclude that the morphing process is a significant enhancement to SA algorithms for these problems.  相似文献   

14.
In this paper we tackle a three-dimensional non-convex domain loading problem. We have to efficiently load identical small boxes into a highly irregular non-convex domain. The boxes to be loaded have a particular shape. If d is the length of the smallest edge of the box, its dimensions are d × nd × md, nm, with n and m integer values. This loading problem arises from an industrial design problem where it is necessary to obtain good solutions with very low computation time. We propose a fast heuristic based on an approximate representation of the non-convex domain in terms of cubes of dimension d and on the decomposition of the whole problem in several two-dimensional subproblems related to ‘planes’ of height d. The proposed heuristic shows good performances in terms of quality of solution and computation times. The results on several real test cases, coming from the industrial application, are shown.  相似文献   

15.
An efficient probabilistic set covering heuristic is presented. The heuristic is evaluated on empirically difficult to solve set covering problems that arise from Steiner triple systems. The optimal solution to only a few of these instances is known. The heuristic provides these solutions as well as the best known solutions to all other instances attempted.  相似文献   

16.
Heuristic concentration (HC) is a two-stage metaheuristic that can be applied to a wide variety of combinatorial problems. It is particularly suited to location problems in which the number of facilities is given in advance. In such settings, the first stage of HC repeatedly applies some random-start interchange (or other) heuristic to produce a number of alternative facility configurations. A subset of the best of these alternatives is collected and the union of the facility sites in them is called a concentration set (CS). Among the component elements of the CS are likely to be included those sites which are members of the optimal solution. In earlier studies the second stage of HC has consisted of an exact procedure to extract the best possible solution from the CS. In this paper we demonstrate, for the p-median problem, the use of two sequentially active heuristics in the second stage of HC. That is, we offer two additional layers of heuristics to improve solutions which are found in the first stage of HC. Thus we are describing a variant of the HC metaheuristic consisting of three layers of heuristics which are utilized in sequence. We propose for this procedure the name of Gamma Heuristic.  相似文献   

17.
The train timetabling problem (TTP) aims at determining an optimal timetable for a set of trains which does not violate track capacities and satisfies some operational constraints.In this paper, we describe the design of a train timetabling system that takes into account several additional constraints that arise in real-world applications. In particular, we address the following issues:
Manual block signaling for managing a train on a track segment between two consecutive stations.
Station capacities, i.e., maximum number of trains that can be present in a station at the same time.
Prescribed timetable for a subset of the trains, which is imposed when some of the trains are already scheduled on the railway line and additional trains are to be inserted.
Maintenance operations that keep a track segment occupied for a given period.
We show how to incorporate these additional constraints into a mathematical model for a basic version of the problem, and into the resulting Lagrangian heuristic. Computational results on real-world instances from Rete Ferroviaria Italiana (RFI), the Italian railway infrastructure management company, are presented.  相似文献   

18.
The linear bilevel programming problem in the optimistic formulation is studied. It is reduced to an optimization problem with a nonconvex constraint in the form of a d.c. function (that is, the difference of two convex functions). For this problem, local and global search methods are developed. Numerical experiments performed for numerous specially generated problems, including large-scale ones, demonstrate the efficiency of the proposed approach.  相似文献   

19.
In this paper, we focus on the variational inequality problem. Based on the Fischer-Burmeister function with smoothing parameters, the variational inequality problem can be reformulated as a system of parameterized smooth equations, a non-interior-point smoothing method is presented for solving the problem. The proposed algorithm not only has no restriction on the initial point, but also has global convergence and local quadratic convergence, moreover, the local quadratic convergence is established without a strict complementarity condition. Preliminary numerical results show that the algorithm is promising.  相似文献   

20.
In this paper a two-stage optimization model is studied to find the optimal location of new facilities and the optimal partition of the consumers (location-allocation problem). The social planner minimizes the social costs, i.e. the fixed costs plus the waiting time costs, taking into account that the citizens are partitioned in the region according to minimizing the capacity costs plus the distribution costs in the service regions. By using optimal transport tools, existence results of solutions to the location-allocation problem are presented together with some examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号