首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
A new approximate analytical technique to address for non-linear problems, namely Optimal Homotopy Asymptotic Method (OHAM) is proposed and has been applied to thin film flow of a fourth grade fluid down a vertical cylinder. This approach however, does not depend upon any small/large parameters in comparison to other perturbation method. This method provides a convenient way to control the convergence of approximation series and allows adjustment of convergence regions where necessary. The series solution has been developed and the recurrence relations are given explicitly. The results reveal that the proposed method is very accurate, effective and easy to use.   相似文献   

2.
The non-linear differential equation for the magnetohydrodynamic Poiseuille flow of Phan-Thein-Tanner (PTT) conducting fluid is derived. Using the homotopy analysis method (HAM), the series solution is developed and its convergence is discussed. Also, the results are presented graphically and the effects of non-dimensional parameters on the flow field are analyzed. The results obtained reveal many interesting behaviors that warrant further study on the equations related to non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.  相似文献   

3.
The steady two-dimensional mixed convection flow of a micropolar fluid over a non-linear stretching sheet is investigated. The governing non-linear equations and their associated boundary conditions are transformed into coupled non-linear ordinary differential equations. The series solution of the problem is obtained by utilizing the homotopy analysis method (HAM). The convergence of the obtained series solutions is carefully checked. The physical significance of interesting parameters on the flow and the thermal fields are shown through graphs and discussed in detail. The values of wall shear stress, couple wall stress and the local Nusselt number are tabulated. Comparison is also made with the corresponding results of viscous fluid with no mixed convection and an excellent agreement is noted.  相似文献   

4.
The aim of this paper is to provide a contemporarily relevant survey of studies on non-linear vibrations of shell-type structures. The effects of geometrical non-linearity, and specific difficulties encountered in non-linear dynamic analysis of shell-type structures are presented and discussed. Studies on non-linear vibrations of shells are categorized by different shell configurations (shapes) in a chronological order. Also, the most commonly used methods of modelling and solution are reviewed and commented. Published reviews on non-linear vibrations of shell-type structures including complicating effects of anisotropy, initial stress, added mass, elastic foundation, stiffeners, open geometry (singly and doubly curved), transverse shear deformations, torsion, and interaction with fluid are also surveyed. Comments on the previous non-linear works are presented and some orientations for future research are suggested. Another purpose of this paper is to provide engineers, scientists and researchers with a list of 175 references, which should be very useful for locating relevant existing literature quickly.  相似文献   

5.
T. Hayat  M. Sajid 《Physics letters. A》2008,372(18):3264-3273
This Letter looks at the rotating flow of a second grade fluid past a porous shrinking surface. The fluid is electrically conducting in the presence of a constant applied magnetic field. The governing partial differential equations are first reduced into ordinary differential equations and then solved by homotopy analysis method (HAM). Convergence of the series solution is shown explicitly. In addition, the obtained results are illustrated graphically to indicate the effects of the pertinent physical parameters.  相似文献   

6.
The effects of variable fluid properties and variable heat flux on the flow and heat transfer of a non-Newtonian Maxwell fluid over an unsteady stretching sheet in the presence of slip velocity have been studied. The governing differential equations are transformed into a set of coupled non-linear ordinary differential equations and then solved with a numerical technique using appropriate boundary conditions for various physical parameters. The numerical solution for the governing non-linear boundary value problem is based on applying the fourth-order Runge-Kutta method coupled with the shooting technique over the entire range of physical parameters. The effects of various parameters like the viscosity parameter, thermal conductivity parameter, unsteadiness parameter, slip velocity parameter, the Deborah number, and the Prandtl number on the flow and temperature profiles as well as on the local skin-friction coefficient and the local Nusselt number are presented and discussed. Comparison of numerical results is made with the earlier published results under limiting cases.  相似文献   

7.
In this article, we consider the effects of double diffusion on magnetohydrodynamics (MHD) Carreau fluid flow through a porous medium along a stretching sheet. Variable thermal conductivity and suction/injection parameter effects are also taken into the consideration. Similarity transformations are utilized to transform the equations governing the Carreau fluid flow model to dimensionless non-linear ordinary differential equations. Maple software is utilized for the numerical solution. These solutions are then presented through graphs. The velocity, concentration, temperature profile, skin friction coefficient, and the Nusselt and Sherwood numbers under the impact of different parameters are studied. The fluid flow is analyzed for both suction and injection cases. From the analysis carried out, it is observed that the velocity profile reduces by increasing the porosity parameter while it enhances both the temperature and concentration profile. The temperature field enhances with increasing the variable thermal conductivity and the Nusselt number exhibits opposite behavior.  相似文献   

8.
T. Hayat  M. Sajid 《Physics letters. A》2008,372(14):2400-2408
The laminar flow problem of convective heat transfer for a second grade fluid over a semi-infinite plate in the presence of species concentration and chemical reaction is investigated. The governing equations are transformed into a dimensionless system of three non-linear coupled partial differential equations. These equations have been solved analytically subject to the relevant boundary conditions by employing a homotopy analysis method (HAM). It is noted that for the arising system, the HAM performs extremely well in terms of efficiency and simplicity. The influence of dimensionless pertinent parameters on the velocity, temperature and concentration fields has been examined carefully.  相似文献   

9.
This Letter looks an analysis for withdrawal of cylinder. The flow depends upon the wire velocity. The fluid considered is a fourth order fluid. The problem is modeled using cylindrical coordinates for velocity and pressure distributions. The solution of the governing equation is obtained using homotopy analysis method (HAM). The variations of the velocity, volume flow rate, radius of coated wire, shear stress and force on the total wire are presented graphically and discussed for emerging non-Newtonian parameter.  相似文献   

10.
The flow of an Oldroyd 8-constant fluid between coaxial cylinders with variable viscosity is considered. The heat transfer analysis is also taken into account. An analytical solution of the non-linear problem is obtained using homotopy analysis method. The behavior of pertinent parameters is analyzed and depicted through graphs.  相似文献   

11.
T.T. Zhang  Z.C. Wang  X. Li 《Physics letters. A》2008,372(18):3223-3227
Research on micro flow, especially on micro slip flow, is very important for designing and optimizing the micro electromechanical system (MEMS). In this Letter, similarity transformation for the Navier-Stokes equation for 2-dimensional steady slip flow in microchannels is given. We provide an analytical solution for the slip flow using a powerful, easy-to-use analytic technique for non-linear problems, that is, the homotopy analysis method (HAM). The analytical solution is presented in the form of an infinite series. The effects of the Knudsen number (Kn) is discussed on the velocity profiles. It is found that the results are in excellent agreement with the existing results in the literature for the case of laminar developed flow.  相似文献   

12.
An analysis is carried out to study the magnetohydrodynamic (MHD) flow and heat transfer characteristics of an electrically conducting dusty non-Newtonian fluid, namely, the upper convected Maxwell (UCM) fluid over a stretching sheet. The stretching velocity and the temperature at the surface are assumed to vary linearly with the distance from the origin. Using a similarity transformation, the governing nonlinear partial differential equations of the model problem are transformed into coupled non-linear ordinary differential equations and the equations are solved numerically by a second order finite difference implicit method known as the Keller-box method. Comparisons with the available results in the literature are presented as a special case. The effects of the physical parameters on the fluid velocity, the velocity of the dust particle, the density of the dust particle, the fluid temperature, the dust-phase temperature, the skin friction, and the wall-temperature gradient are presented through tables and graphs. It is observed that, Maxwell fluid reduces the wall-shear stress. Also, the fluid particle interaction reduces the fluid temperature in the boundary layer. Furthermore, the results obtained for the flow and heat transfer characteristics reveal many interesting behaviors that warrant further study on the non-Newtonian fluid flow phenomena, especially the dusty UCM fluid flow phenomena.  相似文献   

13.
The present prospective theoretical investigation deals with analysis of the peristaltic-ciliary transport of a developing embryo within the fallopian tubal fluid in the human fallopian tube. A mathematical model of peristalsis-cilia induced flow of viscoelastic fluid characterized by the third grade fluid model within the fallopian tubal fluid in a finite two dimensional narrow tube is developed. Non-linear partial differential equation resulting from the modelling of the proposed model is solved using perturbation method. Flow variables like axial and radial velocities, appropriate residue time over tube length, pressure difference over wavelength and stream function are analyzed for embedded parameters and constants. Salient features of the pumping characteristics and trapping phenomenon are discussed in detail. The analysis showed that embedded parameters and constants have opposite effects on axial velocity and appropriate residue time over tube length. Moreover, a comparison of the peristaltic flow with the peristaltic-ciliary flow and the third grade fluid with the linearly viscous fluid is made as a special case. The relevance of the current results to the transport of a developing embryo within the fallopian tubal fluid is also explored. It reveals that, third grade fluid instead of the linearly viscous fluid and the inclusion of cilia along with peristalsis help to complete the required mitotic divisions while transporting the developing embryo within the fallopian tubal fluid in the human fallopian tube.  相似文献   

14.
This article investigates an unbiased analysis for the unsteady two-dimensional laminar flow of an incompressible, electrically and thermally conducting fluid across the space separated by two infinite rotating permeable walls.The influence of entropy generation, Hall and slip effects are considered within the flow analysis. The problem is modeled based on valid physical arguments and the unsteady system of dimensionless PDEs (partial differential equations) are solved with the help of Finite Difference Scheme. In the presence of pertinent parameters, the precise movement of the flow in terms of velocity, temperature, entropy generation rate, and Bejan numbers are presented graphically, which are parabolic in nature. Streamline profiles are also presented, which exemplify the accurate movement of the flow. The current study is one of the infrequent contributions to the existing literature as previous studies have not attempted to solve the system of high order non-linear PDEs for the unsteady flow with entropy generation and Hall effects in a permeable rotating channel. It is expected that the current analysis would provide a platform for solving the system of nonlinear PDEs of the other unexplored models that are associated to the two-dimensional unsteady flow in a rotating channel.  相似文献   

15.
The unsteady magnetohydrodynamic flow of an electrically conducting viscous incompressible third grade fluid bounded by an infinite porous plate is studied with the Hall effect. An external uniform magnetic field is applied perpendicular to the plate and the fluid motion is subjected to a uniform suction and injection. Similarity transformations are employed to reduce the non-linear equations governing the flow under discussion to two ordinary differential equations (with and without dispersion terms). Using the finite difference scheme, numerical solutions represented by graphs with reference to the various involved parameters of interest are discussed and appropriate conclusions are drawn.  相似文献   

16.
A phenomenological method is presented to obtain the hydrodynamic equations for a multicomponent, isotropic, non-reactive fluid to any order in the spatial inhomogeneities. Two assumptions are made, the existence of a local equilibrium state and a non-linear dependence of the fluxes on the thermodynamic forces. In particular, the generalized form for the diffusion equation, to fourth order in the gradients, is obtained. Also, we derive the hydrodynamic equations for a binary mixture in a non-linear Burnett regime. The comparison of our results with others given in the literature and, in particular with those recently derived using the time-dependent correlation function formalism, is given. Finally some remarks are made in connection with the question about the existence of the transport coefficients beyond the Navier-Stokes regime.  相似文献   

17.
Mathematical model for Maxwell fluid flow in rotating frame induced by an isothermal stretching wall is explored numerically. Scale analysis based boundary layer approximations are applied to simplify the conservation relations which are later converted to similar forms via appropriate substitutions. A numerical approach is utilized to derive similarity solutions for broad range of Deborah number. The results predict that velocity distributions are inversely proportional to the stress relaxation time. This outcome is different from that observed for the elastic parameter of second grade fluid. Unlike non-rotating frame, the solution curves are oscillatory decaying functions of similarity variable. As angular velocity enlarges, temperature rises and significant drop in the heat transfer coefficient occurs. We note that the wall slope of temperature has an asymptotically decaying profile against the wall to ambient ratio parameter. From the qualitative view point, temperature ratio parameter and radiation parameter have similar effect on the thermal boundary layer. Furthermore, radiation parameter has a definite role in improving the cooling process of the stretching boundary.A comparative study of current numerical computations and those from the existing studies is also presented in a limiting case. To our knowledge, the phenomenon of non-linear radiation in rotating viscoelastic flow due to linearly stretched plate is just modeled here.  相似文献   

18.
The similarity solution for the steady two-dimensional flow of an incompressible viscous and electrically conducting fluid over a non-linearly semi-infinite stretching sheet in the presence of a chemical reaction and under the influence of a magnetic field gives a system of non-linear ordinary differential equations. These non-linear differential equations are analytically solved by applying a newly developed method, namely the Homotopy Analysis Method (HAM). The analytic solutions of the system of non-linear differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. Graphical results are presented to investigate the influence of the Schmidt number, magnetic parameter and chemical reaction parameter on the velocity and concentration fields. It is noted that the behavior of the HAM solution for concentration profiles is in good agreement with the numerical solution given in reference [A. Raptis, C. Perdikis, Int. J. Nonlinear Mech. 41, 527 (2006)].   相似文献   

19.
The motivation behind this article is to research the Newtonian liquid flow porous stretching/shrinking sheet utilizing a Brinkman model. The leading system of non-linear partial differential equations relating the article is mapped to standard ordinary differential equations via similarity transformations. Exact result is obtained for velocity. The effects of the Brinkman number or viscosity ratio, slip parameter, Darcy number, suction/injection (mass transpiration) parameter and the mass suction parameter on the velocity dispersion are introduced graphically and talked about. The outcomes have conceivable innovative applications in extrusion process and such other unified zones and in the fluid based frameworks including stretchable materials. Examination of fluid flow past a permeable stretching/shrinking sheet embedded in a non-Darcy permeable medium has been performed for a wide scope of various parameters. Exact solution has been obtained.  相似文献   

20.
Even under the assumption of a sinusoidal lift and drag force at a single frequency for a stationary cylinder in a cross flow, higher harmonics that represent non-linearity in the fluid-structure interaction process are present. This fact is considered in the formulation of a non-linear fluid force model for a freely vibrating cylinder in a cross flow. The force model is developed based on an iterative process and the modal analysis approach. The fluid force components in the model can be evaluated from measured vibration data with the help of the auto-regressive moving averaging (ARMA) technique. An example is used to illustrate that non-linear (higher order) force components are present at resonance, even for a case with relatively weak fluid-structure interaction. Further analysis reveals that the fluid force components are dependent on structural damping and mass ratio. The non-linear fluid force model is further modified by taking these considerations into account and is used to predict the dynamic characteristics of a freely vibrating cylinder over a range of Reynolds numbers, mass and structural damping ratios. On comparison with measurements obtained from four different experiments and predictions made by previous single-degree-of-freedom model, good agreement is found over a wide range of these parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号