首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Y2O3:R(R = Yb3+, Er3+, Tm3+) nanophosphors were synthesized by a solvothermal method and the temperature dependence of the white upconversion emission was studied using a 975 nm LD. The upconversion emission spectra in 1 mol% Er3+/5 mol% Yb3+/xTm3+ tri-doped Y2O3 nanophosphors were sintered at 1000 °C with x from 0 to 0.5 mol%. The blue emission intensity increases increasing Tm3+ concentration from 0 to 0.5 mol%, because the Tm3+ state can be easily reached due to the 2F7/2 → 2F5/2 transition of Yb3+ near 10,000 cm−1. The Y2O3: Er3+/Yb3+/Tm3+ nanophosphors exhibit upconversion emission from white to green with increasing sintering temperature. The calculated CIE coordinates are located in the white region at a pump power of 700 mW at 1000 °C, and the color coordinates were very similar to the standard white light emission. Their upconversion process was described through energy level diagrams and results of upconversion emission spectra and pump power dependence.  相似文献   

2.
A gallium nitride (GaN) based Metal-Oxide-Semiconductor (MOS) capacitor was fabricated using radio frequency (RF)-sputtered tantalum oxide (Ta2O5) as the high-k gate dielectric. Electrical characteristics of this capacitor were evaluated via capacitance–voltage (CV), current–voltage (IV), and interface trap density (Dit) measurements with emphasis on the substrate temperature dependence ranging from 25 °C to 200 °C. Charge trapping and conduction mechanism in Ta2O5 were investigated. The experimental results suggested that higher substrate temperature rendered higher oxide capacitance, reduced gate leakage current, and lowered mid-gap interface trap density at the expenses of high border traps and high fixed oxide charges. The gate leakage current through Ta2O5 was found to obey the Ohm's conduction at lower gate bias and the Poole–Frenkel conduction at higher gate bias.  相似文献   

3.
《Solid State Ionics》2006,177(26-32):2333-2337
Pulsed laser deposition has been used to fabricate nanostructured BaCe0.85Y0.15O3−δ films. Protonic conduction of the fabricated BaCe0.85Y0.15O3−δ films was compared to the sintered BaCe0.85Y0.15O3−δ. Sintered samples and laser targets were prepared by sintering BaCe0.85Y0.15O3−δ powders derived by solid state synthesis. Films 1 to 8 μm thick were deposited by KrF excimer laser on porous Al2O3 substrates. Thin films were fabricated at deposition temperatures of 700 to 950 °C at O2 pressures up to 200 mTorr using laser pulse energy densities of 1.4–3 J/cm2. Fabricated films were characterized by X-ray diffraction, electron microscopy and electrical impedance spectroscopy. Single phase BaCe0.85Y0.15O3−δ films with a columnar growth morphology are observed with preferred crystal growth along the [100] or [001] direction. Results indicate [100] growth dependence upon laser pulse energy. Electrical conductivity of bulk samples produced by solid state sintering and thin film samples were measured over a temperature range of 100 to 900 °C. Electrical conduction behavior was dependent upon film deposition temperature. Maximum conductivity occurs at deposition temperature of 900 °C; the electrical conductivity exceeds the sintered specimen. All other deposited films exhibit a lower electrical conductivity than the sintered specimen. Activation energy for electrical conduction showed dependence upon deposition temperature, it varied from 115 to 54 kJ. Film microstructure was attributed to the difference in electrical conductivity of the BaCe0.85Y0.15O3−δ films.  相似文献   

4.
Development of Y2O3 stabilized ZrO2 electrolytes for solid oxide fuel cell with better mechanical properties was attempted. 3 mol% Y2O3 stabilized ZrO2 doped with 3–15 mol% CeO2 was investigated in the present work. The results reveal that the toughness and the bending strength of 3–6 mol% CeO2 doped 3 mol% Y2O3–ZrO2 are much higher than that of 8 mol% Y2O3–ZrO2. The best ionic conductivity observed in 6 mol% ceria-doped 3 mol% Y2O3–ZrO2 electrolyte is better than that of 8 mol% Y2O3–ZrO2 at 800 °C, which indicates the possibility of developing ZrO2-based electrolyte with enhanced toughness.  相似文献   

5.
Eu3+ doped Y2O3 nanophosphors have been synthesized using the simple colloidal precipitation method. Doping of Eu3+ ions in host yttria lattice has been achieved through slow re-crystallization process under wet-chemical conditions followed by annealing at high temperatures (300–1400 °C). The nanophosphors were characterized by using powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), atomic force microscopy (AFM) and spectrofluorometer techniques. XRD analysis reveals formation of pure cubic phase of Y2O3 in samples annealed at 700 °C or above. Further, the XRD data was successfully used to retrieve the crystallite size and size distribution from powder samples using the FW((1/5)/(4/5))M method. Crystallite size (11–50 nm) extracted from XRD has been found to be consistent with AFM measurements. The PL emission spectra of nanophosphors show bright red emission at 612 nm due to hypersensitive electric dipole (ED) 5D07F2 transition of Eu3+ ions in Y2O3 lattice. Further, photoluminescence studies indicate that optimum value of the Eu3+ to get best luminescence properties is 12 at%. Surface conjugations of these nanophosphors with water soluble dextran biomolecules have also been performed. Surface conjugated rare earth nanophosphors have great potential for bio-applications.  相似文献   

6.
《Solid State Ionics》2006,177(19-25):2065-2069
Novel Ni–Al2O3 cermet-supported tubular SOFC cell was fabricated by thermal spraying. Flame-sprayed Al2O3–Ni cermet coating played dual roles of a support tube and an anode current collector. Y2O3-stabilized ZrO2 (YSZ) electrolyte was deposited by atmospheric plasma spraying (APS) to aim at reducing manufacturing cost. The gas tightness of APS YSZ coating was achieved by post-densification process. The influence of YSZ coating thickness on the performance of SOFC test cell was investigated in order to optimize YSZ thickness in terms of open circuit voltage of the cell and YSZ ohmic loss. It was found that the reduction of YSZ thickness from 100 μm to 40 μm led to the increase of the maximum output power density from 0.47 W/cm2 to 0.76 W/cm2 at 1000 °C. Using an APS 4.5YSZ coating of about 40 μm as the electrolyte, the test cell presented a maximum power output density of over 0.88 W/cm2 at 1030 °C. The results indicate that SOFCs with thin YSZ electrolyte require more effective cathode and anode to improve performance.  相似文献   

7.
The growth of ultrathin films of Y2O3(111) on Pt(111) has been studied using scanning tunneling microscopy (STM), X-ray photoemission spectroscopy (XPS), and low energy electron diffraction (LEED). The films were grown by physical vapor deposition of yttrium in a 10? 6 Torr oxygen atmosphere. Continuous Y2O3(111) films were obtained by post-growth annealing at 700 °C. LEED and STM indicate an ordered film with a bulk-truncated Y2O3(111)–1 × 1 structure exposed. Furthermore, despite the lattices of the substrate and the oxide film being incommensurate, the two lattices exhibit a strict in-plane orientation relationship with the [11?0] directions of the two cubic lattices aligning parallel to each other. XPS measurements suggest hydroxyls to be easily formed at the Y2O3 surface at room temperature even under ultra high vacuum conditions. The hydrogen desorbs from the yttria surface above ~ 200 °C.  相似文献   

8.
Phosphors of (Y0.75Gd0.25)2O3:Eu3+ (5 at.%) have been prepared through soft chemistry routes. Conversion of the starting nitrates mixture into oxide is performed through two approaches: (a) hydrothermal treatment (HT) at 200 °C/3 h of an ammonium hydrogen carbonate precipitated mixture and (b) by thermally decomposition of pure nitrate precursor solution at 900 °C in dispersed phase (aerosol) within a tubular flow reactor by spray pyrolysis process (SP). The powders are additionally thermally treated at different temperatures: 600, 1000, and 1100 °C for either 3 or 12 h. HT—derived particles present exclusively one-dimensional morphology (nanorods) up to the temperatures of 600 °C, while the leaf-like particles start to grow afterward. SP—derived particles maintain their spherical shape up to the temperatures of 1100 °C. These submicron sized spheres were actually composed of randomly aggregated nanoparticles. All powders exhibits cubic Ia-3 structure (Y0.75Gd0.25)2O3:Eu and have improved optical characteristics due to their nanocrystalline nature. The detailed study of the influence of structural and morphological powder characteristics on their emission properties is performed based on the results of X-ray powder diffractometry, scanning electron microscopy, X-ray energy dispersive spectroscopy, transmission electron microscopy, and photoluminescence measurements.  相似文献   

9.
Europium-doped yttrium oxide (Y2O3:Eu) thin films were successfully deposited on quartz and ITO/glass substrates by excimer-laser-assisted metal organic deposition (ELAMOD) at low temperatures. The effects of laser wavelength and thermal temperature on the films’ crystallinity and photoluminescence properties were investigated. Films irradiated by an ArF laser at 80 mJ/cm2 and 400–500°C were highly crystallized compared with those prepared by thermal MOD. In contrast, when the film was irradiated by a KrF laser at 500°C, no crystalline Y2O3:Eu was formed. The Y2O3:Eu film irradiated by the ArF laser at 80 mJ/cm2 and 500°C showed typical PL spectra of Eu3+ ions with cubic symmetry and a 5D07F2 transition at ∼612 nm. The PL intensity at 612 nm was much higher for the film prepared with ELAMOD than for that prepared by the thermal-assisted process, and the photoemission intensity of the film prepared with ELAMOD strongly depended on the substrate material.  相似文献   

10.
High infrared emissivity ceramic coatings were prepared on 304 steel by pyrolyzing reactions with poly(hydridomethylsiloxane) (PHMS) and Al/Cr2O3 based mixing powders. The effects of pyrolysis temperature, testing temperature and surface roughness on infrared radiation of polymer derived ceramic coating were systematically investigated. The results indicated that the coating pyrolyzed at 800 °C exhibited a slightly higher infrared emissivity value than that of the coating pyrolyzed at 600 °C, which was attributed to the enhancing photon emission caused by the complete conversion of Al to Al2O3 and PHMS pyrolysis into SiO2, together with the introduction of Cr2O3 based mixing powders. The emissivity value in 3–8 μm waveband of the coating was lower about 0.03 at 600 °C compared with 800 °C testing temperature, while the emissivity value was almost the same in 8–20 μm waveband. The high surface roughness of the coating led to a slightly increasing emissivity due to the enhancing infrared absorbance.  相似文献   

11.
Thermal effects on the optoelectrical characteristics of green InGaN/GaN multiple quantum well (MQW) light-emitting diodes (LEDs) have been investigated in detail for a broad temperature range, from 30 °C to 100 °C. The current-dependent electroluminescence (EL) spectra, current–voltage (IV) curves and luminescence intensity–current (LI) characteristics of green InGaN/GaN MQW LEDs have been measured to characterize the thermal-related effects on the optoelectrical properties of the InGaN/GaN MQW LEDs. The experimental results show that both the forward voltages decreased with a slope of ?3.7 mV/K and the emission peak wavelength increased with a slope of +0.02 nm/K with increasing temperature, indicating a change in the contact resistance between the metal and GaN layers and the existence of a band gap shrinkage effect. The junction temperature estimated from the forward voltage and the emission peak shift varied from 25.6 to 14.5 °C and from 22.4 to 35.6 °C, respectively. At the same time, the carrier temperature decreased from 371.2 to 348.1 °C as estimated from the slope of high-energy side of the emission spectra. With increasing injection current, there was found to be a strong current-dependent blueshift of ?0.15 nm/mA in the emission peak wavelength of the EL spectra. This could be attributed to not only the stronger band-filling effect but also the enhanced quantum confinement effect that resulted from the piezoelectric polarization and spontaneous polarization in InGaN/GaN heterostructures. We also demonstrate a helpful and easy way to measure and calculate the junction temperature of InGaN/GaN MQW LEDs.  相似文献   

12.
《Solid State Ionics》2006,177(19-25):1917-1924
Arrhenius plots of conductivities and capacitances associated with the bulk, overall electrolyte, charge transfer and electrode processes taking place in a symmetrical cell with well-defined Pt electrodes and electrolyte based on the ceramic proton conductor, SrCe0.95Yb0.05O3, were obtained under wet and dry air, wet and dry hydrogen and wet and dry argon over the temperature range, 200 °C–800 °C. Results for all six gas atmospheres are discussed in order to gain insight into the conduction mechanisms taking place within the electrolyte and, especially, the conduction, sorption and diffusion processes occurring at the electrodes, in this model system.  相似文献   

13.
We have investigated the effect of trimethyl aluminum (TMA) and water (H2O) half‐cycle treatments on HF‐treated, and O3‐oxidized GaN surfaces at 300 °C. The in‐situ X‐ray photoelectron spectroscopy results indicate no significant re‐growth of Ga–O–N or self‐cleaning on HF‐treated and O3‐oxidized GaN substrates with exposure to water and TMA. This result is different from the self‐cleaning effect of Ga2O3 seen on sulfur‐treated GaAs or InGaAs substrates. O3 causes aggressive oxidation of GaN substrate and direct O–N bonding compared to H2O. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In order to find a new Er-doped host for near infrared (NIR) optical amplifiers, a study on the optimization of the erbium emission ions in the Y2O3–Al2O3–SiO2 system was performed. (100 ? x) Y3Al5O12 ? (x) SiO2 powders (x varies from 0 to 70, in mol%) with a fixed Er2O3 concentration of 1.0 mol% were synthesized by a modified Pechini method and heat-treated at 900 and 1000 °C. The photoluminescence (PL) spectra at 1540 nm of the 4I13/2 → 4I15/2 transition of Er3+ ions and the up-conversion spectra at visible region (2H11/2 + 4S3/2 + 4F9/2 → 4I15/2) upon 980 nm excitation were evaluated. Different techniques, such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffractometry (XRD) and Fourier transform infrared spectroscopy (FT-IR) were considered to evaluate crystallization and phase-evolution of the powders as a function of the silica content (x) and annealing temperature. The analyses were based on the comparison between two different solvents used in the preparation of the polymeric resins: ethanol and water. The optimal conditions for ethanol are quite different than the conditions for water used as solvent, confirming that the PL properties at the NIR region are highly sensitive to the changes in the host stoichiometry and processing conditions. The highest emission intensity at 1540 nm was observed for x = 30 for ethanol and x = 70 for water, treated at 900 and 1000 °C, respectively. This result could be attributed to the combination of low symmetry and good dispersion of the Er3+ions in these hosts.  相似文献   

15.
The effectiveness of sintering additives for β-SiC was examined based on thermodynamic calculations and experimental observations under hot pressing conditions of 1700–1800 °C. Various types of oxides, such as Al2O3, Fe2O3, MgO, TiO2, WO3 and Y2O3, were examined theoretically by considering the Gibbs formation free energy and vapor pressure. According to experimental observations expanded to their binary and ternary systems after hot pressing at 1750 °C and 20 MPa, Al2O3, MgO, Y2O3 and their mixed systems were found to be the only effective sintering additives that do not react with β-SiC at high temperatures. On the other hand, Fe2O3, TiO2, WO3 and their combinations with other oxides were not effective because of the reaction with β-SiC by forming the corresponding metal carbides and/or silicides, as predicted by thermodynamic simulations. Moreover, the experimental results for the additional possible components were also included.  相似文献   

16.
Al2O3 was added to a 2CaO–La2O3–5P2O5 metaphosphate, to replace 10% of the Ca2+ ions by Al3+, forming a phosphate with the nominal composition 1.8CaO–0.1Al2O3–La2O3–5P2O5. The effect of Al2O3 addition and heat treatment on the microstructure and conductivity of the resulting glass–ceramics was investigated by XRD, SEM, TEM, and AC impedance spectroscopy. Upon transformation from glass to glass–ceramic, conductivities increased significantly. The glasses were isochronally transformed at 700 and at 800 °C for 1 h or 5 h, in air, following heating at 3 or 10 °C/min. With Al2O3 addition, after a heat treatment at 700 °C, 100–300 nm nano-domains of LaP3O9 crystallized from the glass matrix. Annealing at 800 °C produced a further order of magnitude conductivity increase for the Al-free glass, but less so for the Al-containing glass.  相似文献   

17.
A novel synthesis was developed for enhanced luminescence in sesquioxide phosphors containing Eu3+ activator. It consisted of two annealing steps: reduction under vacuum with gaseous H2 at 10 Torr and 1300 °C and re-oxidation at 300–1500 °C in air. The integrated luminescence intensity of the monoclinic Eu2O3 phosphor was enhanced ca. 21 times by this method compared with conventional processing. The photoluminescence (PL) intensity was maximized at re-oxidation temperatures of 500–1100 °C. The PL characteristics of monoclinic Eu2O3 and Gd2O3:0.06Eu samples were compared with a commercial cubic Y2O3:Eu phosphor. The evolution of physical characteristics during the two-step annealing was studied by Raman spectroscopy, XPS, XRD, PL decay analysis, and SEM. PL decay lifetime increased proportionally to the PL intensity over the range 0.5–100 μs. Additional vibrational modes appeared at 490, 497, and 512 cm?1 after the two-step annealing. The increase in PL intensity was ascribed to the formation of excess oxygen vacancies and their redistribution during annealing. Resonance crossovers between the charge transfer state and the emitting 5DJ states are discussed in relation to reported luminescence saturation mechanisms for oxysulfides Ln2O2S:Eu3+ (Ln=Y, La).  相似文献   

18.
We examined the electric field-assisted thermionic emission of atomic oxygen radical anion (O?) in a vacuum from fluorine-substituted derivatives of 12CaO·7Al2O3 (C12A7) with a composition of (12 ? x)CaO·7Al2O3·xCaF2 (0  x  0.8). Unsubstituted C12A7 easily decomposed into 5CaO?3Al2O3 (C5A3) and 3CaO?Al2O3 (C3A) above 830 °C during the emission experiment in a vacuum. The decomposition temperature range became narrower as the amount of F? ion substitution increased, e.g. the sample with x = 0.4 kept a single phase after the emission experiment at 900 °C. The emitted anionic species from the x = 0.4 sample were dominated by O? ions (~ 92%) together with a small amount of O2? ions (~ 4%) and F? ions (~ 4%). The absence of an O2 gas supply to the opposite side of the emission surface led to a nearly steady co-emission of O? ions and electrons with a ratio of < 1/1. The O2 gas supply markedly enhanced the O? ion emission, and suppressed the electron emission. A sustainable and high-purity O? ion emission with a current density of 11 nA cm? 2 was achieved at 830 °C with the supply of 40 Pa O2 gas. The similarity in these emission features to the unsubstituted C12A7, together with the improved thermal stability demonstrates that the F? ion-substituted C12A7 is a promising material for higher intensity O? ion emission at higher temperatures.  相似文献   

19.
BaCe0.7Ta0.1Y0.2O3− δ (BCTY) and BaCe0.8Y0.2O3− δ (BCY) were synthesized by solid-state reaction method at 1,300 °C for 20 h. After being exposed in 3% CO2 + 3% H2O + 94% N2 at 700 °C for 20 h, the BCTY exhibited adequate chemical stability against carbonations while BCY decomposed into BaCO3 and CeO2. The BCTY showed the similar thermal expansion behavior to BCY from room temperature to 1,000 °C in air. The BCTY displayed a conductivity of 0.007 S/cm at 700 °C in humid hydrogen, lower than that of BCY (0.009 S/cm). A fuel cell with 10-μm thick BCTY membrane prepared through an all-solid-state process exhibited 1.004 V for OCV, 330 mW/cm2 for maximum output at 700 °C, respectively. Short-term test shows that the fuel cell performance does not degrade after 20 h.  相似文献   

20.
To understand the effect of Y2BaCuO5 (Y211)/YBa2Cu3O7?y (Y123) interfaces on the oxygen diffusion in single grain YBa2Cu3O7?y superconductors, single grain Y123 superconductors with 0.05 and 0.3 moles of Y2O3 additions were fabricated by a top-seeded melt growth (TSMG) process. Y123 compacts with Y2O3 additions were subjected to melt growth heating cycles with a cooling rate of 1 °C/h through a peritectic temperature (1015 °C) and then annealed at 450 °C for 200 h in flowing oxygen. The superconducting temperature (Tc) and critical current density (Jc) were estimated for the three different regions (top surface (s), intermediate (i) and center (c)) of samples. The amount of Y211/Y123 interface area in single grain Y123 superconductors was successfully controlled by Y2O3 additions. The Tc values of s regions were higher than those of i and c regions, which indicates the presence of more oxygen at the sample surfaces. In addition, the Tc values of i and c regions of the Y123 sample with 0.3 mole Y2O3 addition were higher than those of the same regions of the Y123 sample with 0.05 mole Y2O3 addition due to the promoted oxygen diffusion through Y211/Y123 interfaces and other related defects. In spite of the promoted oxygen diffusion by Y2O3 addition, the large Tc difference among the regions still existed, which suggests sluggish oxygen diffusion into single Y123 grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号