首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work describes measurements of laser propagation through very low-density aerogels and subsequent multi-keV photon production from titanium foils. For efficient foil heating, SiO2 aerogel with densities of 2 and 5 mg/cm3 have been cast into a plastic cylinder, which are then mounted to Ti foils that are 3–20 μm thick. Experiments have been performed on the GEKKO-XII laser facility to characterize laser propagation through the aerogel and X-ray production from the Ti foil. Multi-keV emission is diagnosed with a full set of diagnostics giving laser-to-X-ray conversion efficiencies, time-dependent X-ray power and two-dimensional X-ray imaging.  相似文献   

2.
As multi-keV X-ray sources, seven targets including thick and thin foils, metal-lined halfraums and a foil combined with a plastic cylinder, have been shot on Omega in September 2011. Titanium was used as X-ray emitting material for all the sources. Using experimental data and FCI2 simulation results, we have, for each source type, characterized the emission lobes and determined the spatial directions of maximum multi-keV energy. These results demonstrate the benefit of using a laser drive with a pre-pulse for both thick and thin foils. The favorable effect of a confinement cylinder for the X-ray emitted from front side by a thin foil has also been experimentally found but is not yet confirmed by the simulations. The temporal waveforms of the X-ray power obtained from the different sources as well as the emission spots at the times of maximum emission are also compared.  相似文献   

3.
K-shell spectra of solid Al excited by petawatt picosecond laser pulses have been investigated at the Vulcan PW facility. Laser pulses of ultrahigh contrast with an energy of 160 J on the target allow studies of interactions between the laser field and solid state matter at 1020 W/cm2. Intense X-ray emission of KK hollow atoms (atoms without n = 1 electrons) from thin aluminum foils is observed from optical laser plasma for the first time. Specifically for 1.5 μm thin foil targets the hollow atom yield dominates the resonance line emission. It is suggested that the hollow atoms are predominantly excited by the impact of X-ray photons generated by radiation friction to fast electron currents in solid-density plasma due to Thomson scattering and bremsstrahlung in the transverse plasma fields. Numerical simulations of Al hollow atom spectra using the ATOMIC code confirm that the impact of keV photons dominates the atom ionization. Our estimates demonstrate that solid-density plasma generated by relativistic optical laser pulses provide the source of a polychromatic keV range X-ray field of 1018 W/cm2 intensity, and allows the study of excited matter in the radiation-dominated regime. High-resolution X-ray spectroscopy of hollow atom radiation is found to be a powerful tool to study the properties of high-energy density plasma created by intense X-ray radiation.  相似文献   

4.
The requirement for sources of hard X-rays suitable for high resolution radiography through large ρR targets is prominent in many aspects of current laser-driven plasma physics research. In recent work using the OMEGA EP laser facility [L. J. Waxer, M. J. Guardalben, J. H. Kelly et al., CLEO/QELS, Optical Society of America, San Jose, CA, IEEE (2008)] at the Laboratory for Laser Energetics (LLE) in Rochester, NY, experiments have been performed to measure characteristics of 22–52 keV X-ray sources using high intensity short-pulse lasers. High quality point projection, two-dimensional radiography was demonstrated by irradiating microwire targets with laser intensities of 1016 W cm?2–1019 W cm?2. Microwire targets were manufactured to dimensions of 10 μm × 10 μm × 300 μm and were supported by a 100 μm × 300 μm × 6 μm low-Z substrate. Measurements of the kα conversion efficiency and X-ray source-size are discussed and, of particular importance for radiography, the spectral purity of the backlighter is characterized to assess the relative importance of the Kα emission to bremsstrahlung background.  相似文献   

5.
Results on diagnoses of laser-driven, shock-heated foam plasma with time-resolved Al 1s-2p absorption spectroscopy are reported. Experiments were carried out to produce a platform for the study of relativistic electron transport. In cone-guided Fast Ignition (FI), relativistic electrons generated by a high-intensity, short-pulse igniter beam must be transported through a cone tip to an imploded core. Transport of the energetic electrons could be significantly affected by the temperature-dependent resistivity of background plasmas. The experiment was conducted using four UV beams of the OMEGA EP laser at the Laboratory For Laser Energetics. One UV beam (1.2 kJ, 3.5 ns square) was used to launch a shock wave into a foam package target, consisting of 200 mg/cm3 CH foam with aluminum dopant and a solid plastic container surrounding the foam layer. The other three UV beams with the total energy of 3.2 kJ in 2.5 ns pulse duration were tightly focused onto a Sm dot target to produce a point X-ray source in the energy range of 1.4–1.6 keV. The quasi-continuous X ray signal was transmitted through the shock-heated Al-doped, foam layer and recorded with an X-ray streak camera. The measured 1s-2p Al absorption features were analyzed using an atomic physics code FLYCHK. Electron temperature of 40 eV inferred from the spectral analysis is consistent with 2-D DRACO Radiation-hydrodynamic simulations.  相似文献   

6.
Heating of thin foil targets by an high power laser at intensities of 1017–1019 W/cm2 has been studied as a method for producing high temperature, high density samples to investigate X-ray opacity and equation of state. The targets were plastic (parylene-N) foils with a microdot made of a mixture of germanium and titanium buried at depth of 1.5 μm. The L-shell spectra from the germanium and the K-shell spectra from the titanium were taken using crystal spectrometers recording onto film and an ultra fast X-ray streak camera coupled to a conical focussing crystal with a time resolution of 1 ps. The conditions in the microdot were inferred by comparing the measured spectra to synthetic spectra produced by the time-dependent collisional–radiative (CR) models FLY and FLYCHK. The data were also compared to simulated spectra from a number of opacity codes assuming local thermodynamic equilibrium (LTE). Temperature and density gradients were taken into account in the comparisons. The sample conditions were inferred from the CR modelling using FLYCHK to be 800 ± 100 eV and 1.5 ± 0.5 g/cc. The best fit to the LTE models was at a temperature 20% lower than with the CR model. Though the sample departs from LTE significantly useful spectral comparisons can still be made. The results and comparisons are discussed along with improvements to the experimental technique to achieve conditions closer to LTE.  相似文献   

7.
Laser driven shock wave transit time in thin aluminium targets was experimentally estimated by determining the shock emergence time at the rear of thin aluminium foils of varying thickness from 5 to 35 μm. A 20 J, 5 ns Nd:glass laser was focused to produce laser intensity of 1012 to 5 × 1013 W/cm2 on the targets which were placed in vacuum. Target foil movement was measured to an accuracy of 10 μm using optical shadowgraphy technique. This technique was used to accurately measure the shock transit time by recording the optical shadowgrams at various instants of time and thus identify the instant at which the foil is just set into motion. Shock transit time measured in foils of different thickness can give the value of shock velocity at a given laser intensity. Target motion recorded by shadowgraphy can also give the target foil velocity from which shock pressure can be estimated. Experimental values of shock transit time, shock velocity and shock pressure were observed to agree well with the values using one-dimensional multi-group radiation hydrodynamic simulations. PACS 52.50Jm; 52.50Lp; 52.25 Communicated by K. Takayama  相似文献   

8.
We have begun to use 350–500 kJ of 1/3-micron laser light from the National Ignition Facility (NIF) laser to create millimeter-scale, bright multi-keV x-ray sources. In the first set of shots we achieved 15%–18% x-ray conversion efficiency into Xe M-shell (∼1.5–2.5 keV), Ar K-shell (∼3 keV) and Xe L-shell (∼4–5.5 keV) emission (Fournier et al., Phys. Plasmas 17, 082701, 2010), in good agreement with the emission modeled using a 2D radiation-hydrodynamics code incorporating a modern Detailed Configuration Accounting atomic model in non-LTE (Colvin et al., Phys. Plasmas, 17, 073111, 2010). In this paper we first briefly review details of the computational model and comparisons of the simulations with the Ar/Xe NIF data. We then discuss a computational study showing sensitivity of the x-ray emission to various beam illumination details (beam configuration, pointing, peak power, pulse shape, etc.) and target parameters (size, initial density, etc.), and finally make some predictions of how the x-ray conversion efficiency expected from NIF shots scales with atomic number of the emitting plasma.  相似文献   

9.
We review recent experimental results on the path to producing electron–positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 1016 cm−3 and 1013 cm−3, respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 1018 cm−3, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter.  相似文献   

10.
Kelvin–Helmholtz (KH) turbulent mixing measurements were performed in experiments on the OMEGA Laser Facility [T.R. Boehly et al., Opt. Commun. 133 (1997) 495]. In these experiments, laser-driven shock waves propagated through low-density plastic foam placed on top of a higher-density plastic foil. Behind the shock front, lower-density foam plasma flowed over the higher-density plastic plasma. The interface between the foam and plastic was KH unstable. The experiments were performed with pre-imposed, sinusoidal 2D perturbations, and broadband 3D perturbations due to surface roughness at the interface between the plastic and foam. KH instability growth was measured using X-ray, point-projection radiography. The mixing layer caused by the KH instability with layer width up to ~100 μm was observed at a location ~1 mm behind the shock front. The measured mixing layer width was in good agreement with simulations using a KL turbulent mixing model in the two-dimensional ARES hydrodynamics code. In the definition of the KL model K stands for the specific turbulent kinetic (K) energy, and L for the scale length (L) of the turbulence.  相似文献   

11.
We have modelled an experiment performed at the LULI facility (Ecole Polytechnique, Palaiseau, France). This experiment was devoted to the measurement of the temporal coherence of the transient Ni-like silver X-ray laser at the wavelength of 13.9 nm.In population kinetics studies of saturated lasers, it is necessary to account for the interaction between the X-ray laser electric field and the lasing ions. To this end, we have used the Maxwell–Bloch formalism in the paraxial approximation. The Zeeman sublevels (JM) associated with the lower lasing level (J = 1) are not identically affected by the X-ray laser field. As a result, their populations are different. However, elastic collisions between free electrons and lasing ions have the opposite effect: they tend to restore equilibrium between the sublevel populations. Therefore, elastic collision rates obtained in the distorted wave approximation have been included in the rate equations. Refraction of the X-ray beam, due to electron density gradients, is taken into account by using a ray-trace code which works as a post-processor of the hydro-code EHYBRID.We have checked that the Voigt profile is a good approximation for lasing lines in Ni-like ions. This allowed us to implement a subroutine calculating the Voigt profile in the Maxwell–Bloch code.Whilst the FWHM of the spontaneous emission profile is 12 mÅ, the amplified X-ray line shows a smaller width of 3 mÅ. This is known as the gain narrowing effect. We notice the saturation of the line-width for a propagation length of 2–3 mm. Comparison with experiment is discussed.  相似文献   

12.
The proton energy distribution generated from the interaction of an intense (2 ≈ 1020 W/cm2 μm2) short-pulse (100 fs) laser with a thin foil is investigated using energy resolved measurements and 2D collisional PIC-hybrid simulations. The measured absolute proton spectrum is well matched by a 1.7 MeV exponential function for energies <11 MeV. The proton conversion efficiency from hot electrons ≈6%. Simulations predict a strong radial dependence on the maximum proton energy and on the radial extent of 12 Å hydrocarbon depletion region. C and O ions in the hydrocarbon layer gain significant energies, limiting the efficiency to the protons. The efficiency scaling for ion mixtures is derived using a simple model, and is shown to strongly depend on the cooling rate of the hot electrons. Simulations using hydrogen-rich, layered targets predict much higher efficiencies.  相似文献   

13.
K-shell X-ray emission from laser-irradiated planar Zn, Ge, Br, and Zr foils was measured at the National Ignition Facility for laser irradiances in the range of 0.6–9.5 × 1015 W/cm2. The incident laser power had a pre-pulse to enhance the laser-to-X-ray conversion efficiency (CE) of a 2–5 ns constant-intensity pulse used as the main laser drive. The measured CE into the 8–16 keV energy band ranged from 0.43% to 2%, while the measured CE into the He-like resonance 1s2–1s2p(1P) and intercombination 1s2–1s2p(3P) transitions, as well as from their 1s2(2s,2p)l–1s2p(2s,2p)l satellite transitions for l = 1, 2, 3, corresponding to the Li-, Be-, and B-like resonances, respectively, ranged from 0.3% to 1.5%. Absolute and relative CE measurements are consistent with X-ray energy scaling of ()?3 to ()?5, where is the X-ray energy. The temporal evolution of the broadband X-ray power was similar to the main laser drive for ablation plasmas having a critical density surface.  相似文献   

14.
High-energy decay channels of the Al Lyman-β satellite have been observed in X-ray emission from highly ionized plasma jets created by intense laser irradiation of aluminium foil targets. Atomic structure calculations show that the Lyman β satellite emission consists from six emission groups close to the He-like Al 1s2-1s4p (Heγ) and 1s2-1s5p (Heδ) resonance lines. This provides new possibilities for space resolved analysis of high density plasmas. Non-Maxwellian simulations of the plasma emission carried out with the MARIA code demonstrate that the intensity ratios of the Lyman-β satellites and the Heγ and Heδ resonance lines are very sensitive to the bulk electron temperature. In contrast to standard diagnostic methods, parameter studies show that this bulk electron diagnostics is practically unaffected by suprathermal electrons having less than 10% of the bulk electron density.  相似文献   

15.
We conducted ultrafast electron shadow imaging and deflection measurements of the optical laser-produced warm dense copper nano-foil. The results show that a significant amount of charge is ejected from the foil, forming electron clouds of hundreds of microns on both sides of the pumped foil. Furthermore, even for a thin 30-nm copper film, we found that the electron clouds develop asymmetry between the pumped front side and the rear side at the pump fluence of 4.5 J/cm2. The possible mechanism leading to this ejected charge asymmetry and its implication are discussed.  相似文献   

16.
Laser experiments of the plasma jet formation using nanosecond laser pulses with low energy, i.e., <20 J, are presented. Planar and cratered gadolinium and aluminum targets are irradiated with laser intensities of several 1014 W/cm2. Spatially-resolved time-integrated X-ray spectra were recorded in the spectral range from 7 to 10 Å. A jet-like structure is obtained from aluminum targets with a preformed crater, which is not seen in planar target irradiation. For gadolinium, a jet is observed from both planar and preformed cratered targets, suggesting that the collimation is dominated by radiative cooling. A radiation-hydrodynamics code coupled to a non-LTE ionization code was used to model the plasma. The calculated plasma emission was found to be consistent with the experimental results.  相似文献   

17.
Opacities of four medium Z element plasmas (iron, nickel, copper and germanium) have been measured at the LULI-2000 facility in similar conditions: temperatures between 15 and 25 eV and densities between 2 and 10 mg/cm3, in a wavelength range (8–18 Å) including the strong 2p–3d structures.Two laser beams from the LULI facility were used in the nanosecond-picosecond configuration. The NANO-2000 beam (at λ = 0.53 μm) heated a gold hohlraum with an energy between 30 and 150 J with a duration of 0.6 ns. Samples covering half a hohlraum hole were thus radiatively heated. The picosecond pulse PICO-2000 beam (at λ = 1.053 μm) has been used to produce a short (about 10 ps) X-ray backlighter in order to reduce time variations of temperatures and densities during the measurement. A crystal high-resolution spectrometer was used as the main diagnostic to record at the same time the non-absorbed and the absorbed backlighter spectra. Radiation temperatures were measured using a broadband spectrometer. 1D and 2D simulations have been performed in order to estimate hydrodynamic plasmas parameters.The measured spectra have been compared with theoretical ones obtained using either the superconfiguration code SCO or the detailed term accounting code HULLAC. These comparisons allow us to check the modeling of the statistical broadening and of the spin-orbit splitting of the 2p–3d transitions and related effects such as the interaction between relativistic subconfigurations belonging to the same non-relativistic configuration.  相似文献   

18.
Pulse intensities greater than 1017 Watt/cm2 were reached at the FLASH soft X-ray laser in Hamburg, Germany, using an off-axis parabolic mirror to focus 15 fs pulses of 5–70 μJ energy at 13.5 nm wavelength to a micron-sized spot. We describe the interaction of such pulses with niobium and vanadium targets and their deuterides. The beam produced craters in the solid targets, and we measured the kinetic energy of ions ejected from these craters. Ions with several keV kinetic energy were observed from craters approaching 5 μm in depth when the sample was at best focus. We also observed the onset of saturation in both ion acceleration and ablation with pulse intensities exceeding 1016 W/cm2, when the highest detected ion energies and the crater depths tend to saturate with increasing intensity.A general difficulty in working with micron and sub-micron focusing optics is finding the exact focus of the beam inside a vacuum chamber. Here we propose a direct method to measure the focal position to a resolution better than the Rayleigh length. The method is based on the correlation between the energies of ejected ions and the physical dimensions of the craters. We find that the focus position can be quickly determined from the ion time-of-flight (TOF) data as the target is scanned through the expected focal region. The method does not require external access to the sample or venting the vacuum chamber. Profile fitting employed to analyze the TOF data can extend resolution beyond the actual scanning step size.  相似文献   

19.
Spectra of the W L transitions in the energy range 8–12 keV from warm dense plasmas generated by the Naval Research Laboratory's Gamble II pulsed power machine were recorded by a newly developed high-resolution transmission-crystal X-ray spectrometer with ±2 eV accuracy. The discharges have up to 2 MV voltage, 0.5 MA current, and produce up to 2.4 MJ/cm?3 energy density. The plasma-filled rod pinch (PFRP) diode produces a plasma with Ne ≈ 1022 cm?3 and Te ≈ 50 eV during the time of maximum X-ray emission. By analyzing the line shapes, it was determined that the Lβ2 inner-shell transition from the 4d5/2 level was shifted to higher energy by up to 23 eV relative to nearby Lβ transitions from n = 3 levels. In addition, the Lβ2 transition was significantly broader and asymmetric compared to the n = 3 transitions. The energy shift of the Lβ2 transition results from the ionization of electrons outside the 4d shell that perturbs the transition energies in the ions to higher values. The increased line width and asymmetry result from unresolved transitions from a range of ionization states up to +28. The ionization distribution was determined by comparison of the measured energy shifts and widths to calculated transition energies in W ions, and the ionization was correlated with Gamble discharge parameters such as the anode type and the high voltage delay time. This work demonstrates a new hard X-ray spectroscopic diagnostic technique for the direct measurement of the ionization distribution in warm dense plasmas of the heavy elements W through U that is independent of the other plasma parameters and does not require interpretation by hydrodynamic, atomic kinetics, and radiative simulation codes.  相似文献   

20.
The results of the recent experiments focused on study of x-ray radiation from multicharged plasmas irradiated by relativistic (I > 1019 W/cm2) sub-ps laser pulses on Leopard laser facility at NTF/UNR are presented. These shots were done under different experimental conditions related to laser pulse and contrast. In particular, the duration of the laser pulse was 350 fs or 0.8 ns and the contrast was varied from high (10?7) to moderate (10?5). The thin laser targets (from 4 to 750 μm) made of a broad range of materials (from Teflon to iron and molybden to tungsten and gold) were utilized. Using the x-ray diagnostics including the high-precision spectrometer with resolution R ~ 3000 and a survey spectrometer, we have observed unique spectral features that are illustrated in this paper. Specifically, the observed L-shell spectra for Fe targets subject to high intensity lasers (~1019 W/cm2) indicate electron beams, while at lower intensities (~1016 W/cm2) or for Cu targets there is much less evidence for an electron beam. In addition, K-shell Mg features with dielectronic satellites from high-Rydberg states, and the new K-shell F features with dielectronic satellites including exotic transitions from hollow ions are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号