首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AlGaN/GaN high electron mobility transistors (HEMTs) are fabricated by employing SiN passivation, this paper investigates the degradation due to the high-electric-field stress. After the stress, a recoverable degradation has been found, consisting of the decrease of saturation drain current IDsat, maximal transconductance gm, and the positive shift of threshold voltage VTH at high drain-source voltage VDS. The high-electric-field stress degrades the electric characteristics of AlGaN/GaN HEMTs because the high field increases the electron trapping at the surface and in AlGaN barrier layer. The SiN passivation of AlGaN/GaN HEMTs decreases the surface trapping and 2DEG depletion a little during the high-electric-field stress. After the hot carrier stress with VDS=20 V and VGS=0 V applied to the device for 104 sec, the SiN passivation decreases the stress-induced degradation of IDsat from 36% to 30%. Both on-state and pulse-state stresses produce comparative decrease of IDsat, which shows that although the passivation is effective in suppressing electron trapping in surface states, it does not protect the device from high-electric-field degradation in nature. So passivation in conjunction with other technological solutions like cap layer, prepassivation surface treatments, or field-plate gate to weaken high-electric-field degradation should be adopted.  相似文献   

2.
Effects of an AlN passivation layer on the microstructure and electronic properties of AlGaN/GaN heterostructures were investigated by X-ray diffraction and Hall effect measurements. AlN passivation induced an additional compressive stress in an AlGaN barrier layer instead of an additional tensile stress induced by Si3N4 passivation. The change of strain after passivation contributes in a relatively small proportion to the variation of the carrier concentration in AlGaN/GaN heterostructures compared with the contribution from passivation of surface traps. The results from Hall effect measurements show that the AlN passivation layer has a better effect on passivation of deep levels than the Si3N4 film and also results in a remarkable increase in mobility of the two-dimensional electron gas. PACS 73.40.Kp; 71.55.Eq; 81.65.Rv; 81.05.Ea; 61.05.cp  相似文献   

3.
T R LENKA  A K PANDA 《Pramana》2012,79(1):151-163
In this paper, a new gate-recessed AlGaN/GaN-based high electron mobility transistor (HEMT) on SiC substrate is proposed and its DC as well as microwave characteristics are discussed for Si3N4 and SiO2 passivation layers using technology computer aided design (TCAD). The two-dimensional electron gas (2DEG) transport properties are discussed by solving Schr?dinger and Poisson equations self-consistently resulting in various subbands having electron eigenvalues. From DC characteristics, the saturation drain currents are measured to be 600?mA/mm and 550?mA/mm for Si3N4 and SiO2 passivation layers respectively. Apart from DC, small-signal AC analysis has been done using two-port network for various microwave parameters. The extrinsic transconductance parameters are measured to be 131.7?mS/mm at a gate voltage of V gs?= ?0.35?V and 114.6?mS/mm at a gate voltage of V gs?= ?0.4?V for Si3N4 and SiO2 passivation layers respectively. The current gain cut-off frequencies (f t) are measured to be 27.1?GHz and 23.97?GHz in unit-gain-point method at a gate voltage of ?0.4?V for Si3N4 and SiO2 passivation layers respectively. Similarly, the power gain cut-off frequencies (f max) are measured to be 41?GHz and 38.5?GHz in unit-gain-point method at a gate voltage of ?0.1?V for Si3N4 and SiO2 passivation layers respectively. Furthermore, the maximum frequency of oscillation or unit power gain (MUG = 1) cut-off frequencies for Si3N4 and SiO2 passivation layers are measured to be 32?GHz and 28?GHz respectively from MUG curves and the unit current gain, ?O?h 21??O?=?1 cut-off frequencies are measured to be 140?GHz and 75?GHz for Si3N4 and SiO2 passivation layers respectively from the abs ?O?h 21??O curves. HEMT with Si3N4 passivation layer gives better results than HEMT with SiO2 passivation layer.  相似文献   

4.
Zhihong Chen 《中国物理 B》2022,31(11):117105-117105
We demonstrate a novel Si-rich SiN bilayer passivation technology for AlGaN/GaN high electron mobility transistors (HEMTs) with thin-barrier to minimize surface leakage current to enhance the breakdown voltage. The bilayer SiN with 20-nm Si-rich SiN and 100-nm Si$_{3}$N$_{4}$ was deposited by plasma-enhanced chemical vapor deposition (PECVD) after removing 20-nm SiO$_{2}$ pre-deposition layer. Compared to traditional Si$_{3}$N$_{4}$ passivation for thin-barrier AlGaN/GaN HEMTs, Si-rich SiN bilayer passivation can suppress the current collapse ratio from 18.54% to 8.40%. However, Si-rich bilayer passivation leads to a severer surface leakage current, so that it has a low breakdown voltage. The 20-nm SiO$_{2}$ pre-deposition layer can protect the surface of HEMTs in fabrication process and decrease Ga-O bonds, resulting in a lower surface leakage current. In contrast to passivating Si-rich SiN directly, devices with the novel Si-rich SiN bilayer passivation increase the breakdown voltage from 29 V to 85 V. Radio frequency (RF) small-signal characteristics show that HEMTs with the novel bilayer SiN passivation leads to $f_{\rm T}/f_{\rm max}$ of 68 GHz/102 GHz. At 30 GHz and $V_{\rm DS} = 20$ V, devices achieve a maximum $P_{\rm out}$ of 5.2 W/mm and a peak power-added efficiency (PAE) of 42.2%. These results indicate that HEMTs with the novel bilayer SiN passivation can have potential applications in the millimeter-wave range.  相似文献   

5.
Passivating the ungated surface of AlGaN/GaN HEMTs with silicon nitride (SiN) is effective in improving the microwave output power performances of these devices. However, very little information is available about surface states in GaN-based HEMTs after SiN passivation. In this work we investigate AlGaN/GaN HEMTs structures having either metal–semiconductor or metal–SiN–semiconductor gate contacts. In short gate devices conductance DLTS measurements point out a hole-like peak that shows an anomalous behaviour and can be ascribed to surface states in the access regions of the device. In insulated gate HEMTs a band of levels is detected and ascribed to surface states, whose energy ranges from 0.14 to 0.43 eV. Capacitance–voltage measurements allow us to point out the existence of a second band of interface states deeper in energy than the former one. This band is responsible for slow transients observed in the characteristics of the insulated gate FAT-HEMT.  相似文献   

6.
p型硅MOS结构Si/SiO2界面及其附近的深能级与界面态   总被引:1,自引:0,他引:1       下载免费PDF全文
陈开茅  武兰青  彭清智  刘鸿飞 《物理学报》1992,41(11):1870-1879
用深能级瞬态谱(DLTS)技术系统研究了Si/SiO2界面附近的深能级和界面态。结果表明,在热氧化形成的Si/SiO2界面及其附近经常存在一个浓度很高的深能级,它具有若干有趣的特殊性质,例如它的DLTS峰高度强烈地依赖于温度,以及当栅偏压使费密能级与界面处硅价带顶的距离明显小于深能级与价带顶的距离时,仍然可以观测到一个很强的DLTS峰。另外,用最新方法测量的Si/SiO2界面连续态的空穴俘获截面与温度有关,而与能量位置无明显关系,DLTS测 关键词:  相似文献   

7.
Deep level transient spectroscopy(DLTS) as a method to investigate deep traps in AlGaN/GaN heterostructure or high electron mobility transistors(HEMTs) has been widely utilized.The DLTS measurements under different bias conditions are carried out in this paper.Two hole-like traps with active energies of E_v + 0.47 eV,and E_v + 0.10 eV are observed,which are related to surface states.The electron traps with active energies of E_c-0.56 eV are located in the channel,those with E_c-0.33 eV and E_c-0.88 eV are located in the AlGaN layer.The presence of surface states has a strong influence on the detection of electron traps,especially when the electron traps are low in density.The DLTS signal peak height of the electron trap is reduced and even disappears due to the presence of plentiful surface state.  相似文献   

8.
谷文萍  张林  李清华  邱彦章  郝跃  全思  刘盼枝 《物理学报》2014,63(4):47202-047202
本文采用能量为1 MeV的中子对SiN钝化的AlGaN/GaN HEMT(高电子迁移率晶体管)器件进行了最高注量为1015cm-2的辐照.实验发现:当注量小于1014cm-2时,器件特性退化很小,其中栅电流有轻微变化(正向栅电流IF增加,反向栅电流IR减小),随着中子注量上升,IR迅速降低.而当注量达到1015cm-2时,在膝点电压附近,器件跨导有所下降.此外,中子辐照后,器件欧姆接触的方块电阻退化很小,而肖特基特性退化却相对明显.通过分析发现辐照在SiN钝化层中引入的感生缺陷引起了膝点电压附近漏电流和反向栅泄漏电流的减小.以上结果也表明,SiN钝化可以有效地抑制中子辐照感生表面态电荷,从而屏蔽了绝大部分的中子辐照影响.这也证明SiN钝化的AlGaN/GaN HEMT器件很适合在太空等需要抗位移损伤的环境中应用.  相似文献   

9.
高场应力及栅应力下AlGaN/GaN HEMT器件退化研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用不同的高场应力和栅应力对AlGaN/GaN HEMT器件进行直流应力测试,实验发现:应力后器件主要参数如饱和漏电流,跨导峰值和阈值电压等均发生了明显退化,而且这些退化还是可以完全恢复的;高场应力下,器件特性的退化随高场应力偏置电压的增加和应力时间的累积而增大;对于不同的栅应力,相对来说,脉冲栅应力和开态栅应力下器件特性的退化比关态栅应力下的退化大.对不同应力前后器件饱和漏电流,跨导峰值和阈值电压的分析表明,AlGaN势垒层陷阱俘获沟道热电子以及栅极电子在栅漏间电场的作用下填充虚栅中的表面态是这些不同应 关键词: AlGaN/GaN HEMT器件 表面态(虚栅) 势垒层陷阱 应力  相似文献   

10.
《Current Applied Physics》2015,15(3):213-218
The present work reports the fabrication and detailed electrical properties of Al-doped CdO/Si-nanowire (SiNW) arrays/p-type Si Schottky diodes with and without SiNW surface passivation. It is shown that the interfacial trap states influence the electronic conduction through the device. The experimental results demonstrate that the effects of the dangling bonds at the SiNW surface and Si vacancies at the SiOx/SiNW interface which can be changed by the Si–O bonding on the energy barrier lowering and the charge transport property. The induced dominance transformation from electron traps to hole traps in the SiNWs by controlling the passivation treatment time is found in this study.  相似文献   

11.
We discuss DLTS andC-V measurements on Al/Si3N4/Si(2nm)/n-GaAs (≈ 5×1017 cm?3) structures. Three discrete deep traps superimposed on a U-shaped interface-state continuum have been identified, with respective thermal energies:E c?0.53 eV,E c?0.64 eV, andE v+0.69 eV. The second one (0.64 eV) is presented as an electric field sensitive level, its enhanced phonon-assisted emission resulting in a rapid shift of the corresponding DLTS peak to lower temperatures, as the applied (negative) reverse bias voltage increases. An interpretation through emission from the quantum well, introduced by means of the intermediate ultrathin Si layer, has failed.  相似文献   

12.
We report on the growth by molecular beam epitaxy of AlGaN/GaN high electron mobility transistors (HEMTs) on Si(111)/ SiO2/polySiC substrates. The structural, optical, and electrical properties of these films are studied and compared with those of heterostructures grown on thick Si(111) substrates. Field effect transistors have been realized, and they demonstrate the potentialities of III–V nitrides grown on these advanced substrates.  相似文献   

13.
The defects at the Si/SiO2 interface have been studied by the deep-level transient spectroscopy (DLTS) technique in p-type MOS structures with and without gold diffusion. The experimental results show that the interaction of gold and Si/SiO2 interface defect,Hit(0.494), results in the formation of a new interface de-fect, Au-Hit(0.445). Just like the interface defect, Hit(0.494), the new interface defect possesses a few interesting properties, for example, when the gate voltage applied across the MOS structure reduces the energy interval between Fermi-level and Si valence band of the Si surface to values smaller than the hole ionization Gibbs free energy of the defect, a sharp DLTS peak is still observable; and the hole apparent activation energy increases with the decrease of the Si surface potential barrier height. These properties can be successfully explained with the transition energy band model of the Si/SiO2 interface.  相似文献   

14.
<正>Sodium beta-alumina(SBA) is deposited on AlGaN/GaN by using a co-deposition process with sodium and Al2O3 as the precursors.The X-ray diffraction(XRD) spectrum reveals that the deposited thin film is amorphous.The binding energy and composition of the deposited thin film,obtained from the X-ray photoelectron spectroscopy(XPS) measurement,are consistent with those of SBA.The dielectric constant of the SBA thin film is about 50.Each of the capacitance-voltage characteristics obtained at five different frequencies shows a high-quality interface between SBA and AlGaN.The interface trap density of metal-insulator-semiconductor high-electron-mobility transistor(MISHEMT) is measured to be(3.5~9.5)×1010 cm-2·eV-1 by the conductance method.The fixed charge density of SBA dielectric is on the order of 2.7×1012 cm-2.Compared with the AlGaN/GaN metal-semiconductor heterostructure high-electronmobility transistor(MESHEMT),the AlGaN/GaN MISHEMT usually has a threshold voltage that shifts negatively. However,the threshold voltage of the AlGaN/GaN MISHEMT using SBA as the gate dielectric shifts positively from—5.5 V to—3.5 V.From XPS results,the surface valence-band maximum(VBM-EF) of AlGaN is found to decrease from 2.56 eV to 2.25 eV after the SBA thin film deposition.The possible reasons why the threshold voltage of AlGaN/GaN MISHEMT with the SBA gate dielectric shifts positively are the influence of SBA on surface valence-band maximum (VBM-EF),the reduction of interface traps and the effects of sodium ions,and/or the fixed charges in SBA on the two-dimensional electron gas(2DEG).  相似文献   

15.
王冲  全思  马晓华  郝跃  张进城  毛维 《物理学报》2010,59(10):7333-7337
深入研究了两种增强型AlGaN/GaN高电子迁移率晶体管(HEMT)高温退火前后的直流特性变化.槽栅增强型AlGaN/GaN HEMT在500 ℃ N2中退火5 min后,阈值电压由0.12 V正向移动到0.57 V,器件Schottky反向栅漏电流减小一个数量级.F注入增强型AlGaN/GaN HEMT在 400 ℃ N2中退火2 min后,器件阈值电压由0.23 V负向移动到-0.69 V,栅泄漏电流明显增大.槽栅增强型器件退火过程中Schottky有效势垒  相似文献   

16.
Formation of defect states on semiconductor surfaces, at its interfaces with thin films and in semiconductor volumes is usually predetermined by such parameters as semiconductor growth process, surface treatment procedures, passivation, thin film growth kinetics, etc. This paper presents relation between processes leading to formation of defect states and their passivation in Si and GaAs related semiconductors and structures. Special focus is on oxidation kinetics of yttrium stabilized zirconium/SiO2/Si and Sm/GaAs structures. Plasma anodic oxidation of yttrium stabilized zirconium based structures reduced size of polycrystalline silicon blocks localised at thin film/Si interface. Samarium deposited before oxidation on GaAs surface led to elimination of EL2 and/or ELO defects in MOS structures. Consequently, results of successful passivation of deep traps of interface region by CN atomic group using HCN solutions on oxynitride/Si and double oxide layer/Si structures are presented and discussed. By our knowledge, we are presenting for the first time the utilization of X-ray reflectivity method for determination of both density of SiO2 based multilayer structure and corresponding roughnesses (interfaces and surfaces), respectively.  相似文献   

17.
We report the realization of an AlGaN/GaN HEMT on silicon (001) substrate with noticeably better transport and electrical characteristics than previously reported. The heterostructure has been grown by molecular beam epitaxy. The 2D electron gas formed at the AlGaN/GaN interface exhibits a sheet carrier density of 8×1012 cm−2 and a Hall mobility of 1800 cm2/V s at room temperature. High electron mobility transistors with a gate length of 4 μm have been processed and DC characteristics have been achieved. A maximum drain current of more than 500 mA/mm and a transconductance gm of 120 mS/mm have been obtained. These results are promising and open the way for making efficient AlGaN/GaN HEMT devices on Si(001).  相似文献   

18.
We investigate the instability of threshold voltage in D-mode MIS-HEMT with in-situ SiN as gate dielectric under different negative gate stresses.The complex non-monotonic evolution of threshold voltage under the negative stress and during the recovery process is induced by the combination effect of two mechanisms.The effect of trapping behavior of interface state at SiN/AlGaN interface and the effect of zener traps in AlGaN barrier layer on the threshold voltage instability are opposite to each other.The threshold voltage shifts negatively under the negative stress due to the detrapping of the electrons at SiN/AlGaN interface,and shifts positively due to zener trapping in AlGaN barrier layer.As the stress is removed,the threshold voltage shifts positively for the retrapping of interface states and negatively for the thermal detrapping in AlGaN.However,it is the trapping behavior in the AlGaN rather than the interface state that results in the change of transconductance in the D-mode MIS-HEMT.  相似文献   

19.
The aluminium gallium nitride (AlGaN) barrier thickness dependent trapping characteristic of AlGaN/GaN heterostructure is investigated in detail by frequency dependent conductance measurements. The conductance measurementsin the depletion region biases (−4.8 V to −3.2 V) shows that the Al0.3Ga0.7N(18 nm)/GaN structure suffers from both the surface (the metal/AlGaN interface of the gate region) and interface (the AlGaN/GaN interface of the channel region) trapping states, whereas the AlGaN/GaN structure with a thicker AlGaN barrier (25 nm) layer suffers from only interface (the channel region of AlGaN/GaN) trap energy states in the bias region (−6 V to −4.2). The two extracted time constants of the trap levels are (2.6–4.59) μs (surface) and (113.4–33.8) μs (interface) for the Al0.3Ga0.7N(18 nm)/GaN structure in the depletion region of biases (−4.8 V to −3.2 V), whereas the Al0.3Ga0.7N (25 nm)/GaN structure yields only interface trap states with time constants of (86.8–33.3) μs in the voltage bias range of −6.0 V to −4.2 V. The extracted surface trapping time constants are found to be very muchless in the Al0.3Ga0.7N(18 nm)/GaN heterostructure compared to that of the interface trap states. The higher electric field formation across the AlGaN barrier causes de-trapping of the surface trapped electron through a tunnelling process for the Al0.3Ga0.7N(18 nm)/GaN structure, and hence the time constants of the surface trap are less.  相似文献   

20.
This paper discusses the effect of N 2 plasma treatment before dielectric deposition on the electrical performance of a Al2O3 /AlGaN/GaN metal-insulator-semiconductor high electron mobility transistor(MISHEMT),with Al2O3 deposited by atomic layer deposition.The results indicated that the gate leakage was decreased two orders of magnitude after the Al2O3 /AlGaN interface was pretreated by N 2 plasma.Furthermore,effects of N 2 plasma pretreatment on the electrical properties of the AlGaN/Al2O3 interface were investigated by x-ray photoelectron spectroscopy measurements and the interface quality between Al2O3 and AlGaN film was improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号