首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Physics letters. A》2020,384(27):126680
The dielectric properties of Fe-doped Ti-rich SrTiO3 ceramics at both A and B sites were investigated. For A site doping, we found one structural phase transition associated with the substitution of smaller Fe ions, and two sets of dielectric relaxations ascribed to oxygen vacancies and hopping conduction between Fe2+ and Fe3+, respectively. Cole-Cole relation shows that both thermally activated dielectric relaxation behaviors mainly originate from the grain boundary. However, for B site doping, they are not observed in the measured temperature range since both the short-range diffusion of oxygen vacancies and electron conduction become the long-range migration, which indicates that the additional conductive channels are opened when Fe ion doping changes from A to B site. The results provide an experimental basis for adjusting dielectric properties in paraelectric materials.  相似文献   

2.
The electric permittivity measurements under different ac or dc field amplitudes on lead-free (Na0.5Bi0.5)0.88Ba0.12TiO3 ceramics were performed. A significant increase or decrease in permittivities was observed with increasing ac or dc fields intensity, respectively. It was found that temperature T m decreases or increases with increasing ac or dc fields, respectively. When ac field amplitude increased, stronger frequency relaxation around T m and greater shift in T m was observed. This was in opposite to the effect of dc field intensity. The obtained results were discussed in terms of polar region behaviour in external electric fields.  相似文献   

3.
A polycrystalline vanadium doped lead free dielectric material of Bi(Zn2/3V1/3)O3 (BZV) has been prepared using a standard high-temperature solid state reaction technique. Its temperature and frequency dependent capacitive, conductive and resistive characteristics are outlined though experimental investigation. The formation of single phase compound of BZV material with orthorhombic crystal symmetry is identified through X-ray diffraction data analysis, and the homogeneous distribution of grains are realized through scanning electron micrograph. The acquaintance of frequency–temperature dependent electrical parameters with the obtained micrograph provides the experimental evidence of contributions of grain as well as grain boundary in its capacitive and resistive characteristics. The negative temperature coefficient of resistance behaviour of the material is revealed from impedance characteristic, and non-Debye type relaxation has been realized from the Nyquist plot. The charge carriers of this electronic compound have both long & short range order that has been validated from the complex modulus and impedance analysis. The prepared electronic material substantiate some important dielectric features which props up the material as promising component for electronic devices.  相似文献   

4.
《Current Applied Physics》2018,18(10):1149-1157
Different type doped CaBi2Nb2O9 (CBN) ceramics were prepared by a conventional solid state sintering method. The number of oxygen vacancies were decreased or increased by the introduction of W6+ and Ti4+ doping in CBN ceramics. The influence of W6+, Ti4+ and W6+/Ti4+ dopants on the microstructures and electrical properties of CBN-based ceramics was investigated. The voids and spherical morphology in the SEM image of W, Ti co-doped ceramics indicate that W, Ti co-doping could change the microstructure of CBN-based ceramics. Impedance analysis results show that the electrical properties of CBN-based ceramics have a close relationship with the number of oxygen vacancies. W doping and W, Ti co-doping decrease the oxygen vacancies, as a result, the resistance and piezoelectric properties were increased and the frequency dispersion of dielectric properties were restrained.  相似文献   

5.
The crystal structure of sodium bismuth tantalate, Na0.5Bi2.5Ta2O9, was analyzed by the powder X-ray-diffraction Rietveld method. The distribution of Na atoms was found to be ordered in the A site of the pseudo-perovskite (ATa2O7)2- blocks. The piezoelectric properties were effectively examined using dense bulk ceramics containing manganese oxide as the dopant. The electromechanical coupling coefficients (kij) and the electrical quality factors (Qm) are kp=10%, k31=8.3%, kt=19.7%, and Qm=3000. Received: 1 July 2002 / Accepted: 3 July 2002 / Published online: 10 September 2002 RID="*" ID="*"Corresponding author. Fax: +81-743-726069, E-mail: hiro-t@ms.aist-nara.ac.jp  相似文献   

6.
In the present work, lead-free piezoelectric ceramics (Na0.5Bi0.5)TiO3xCuO–yNiO (for x = 0.0, 0.02, 0.04 and 0.06) have been prepared by a conventional solid-state reaction method. An investigation of CuO and NiO doping in bismuth sodium titanate (BNT) and a study of the structure, morphology, and dielectric and ferroelectric properties of the NBT–CuNi system have been conducted. Phase and microstructural analysis of the (Na0.5Bi0.5)TiO3 (NBT) based ceramics has been carried out using X-ray diffraction and scanning electron microscopy (SEM) techniques. Field emission scanning electron microscopy (FE-SEM) images showed that inhibition of grain growth takes place with increasing Cu and Ni concentration. The results indicate that the co-doping of NiO and CuO is effective in improving the dielectric and ferroelectric properties of NBT ceramics. Temperature-dependent dielectric studies have also been carried out at room temperature to 400 °C at different frequencies. The NBT ceramics co-doped with x = 0.06 and y = 0.06 exhibited an excellent dielectric constant ?r = 1514. The study suggests that there is enormous scope of application of such materials in the future for actuators, ultrasonic transducers and high-frequency piezoelectric devices.  相似文献   

7.
Aurivillius phase Bi3Ti1−xTaxNb1−xWxO12 high temperature piezoceramics were prepared by a conventional solid state reaction method. The crystal structure, dielectric, electrical conduction and piezoelectric properties were systematically studied. Pure or modified Bi3TiNbO9 ceramics revealed the presence of only two-layered Aurivillius phase, indicating that Ta/W doping entered into the B-site of pseudo-perovskite structure and formed solid solutions. The Curie temperature had a strong reliance on the structural distortion. Furthermore, Ta/W dopants act as a donor doping, decrease the number of oxygen vacancies and facilitate the domain wall motion. As a result, Ta/W modifications significantly increase the DC resistivity and piezoelectric properties. Bi3Ti0.98Ta0.02Nb0.98W0.02O12 ceramics possess the optimum d33 value (∼12.5 pC/N) together with a high TC point (∼893 °C). Moreover, the resonance–antiresonance spectra demonstrate that the Ta/W-BTN ceramics are indeed piezoelectric in nature at 600 °C. The d33 value of BTTNW-2 ceramic remains ∼12.2 pC/N after annealing at 700 °C. These factors suggest that the BTTNW-based ceramic is a promising candidate for ultra-high temperature sensor applications.  相似文献   

8.
9.
《Current Applied Physics》2019,19(12):1391-1398
The structural, magnetic, dielectric and optical properties of Aurivillius Bi6Fe2Ti3O18-based ceramics were investigated in detail. The replacement of Co for Fe/Ti ions obviously varies the grain morphology. Compared with Bi6Fe2Ti3O18 (BFTO) with antiferromagnetic ordering, a spin glass state can be observed in Bi5.25La0.75Fe2Ti3O18 ceramic, while other samples exhibit the ferromagnetic behavior. The specimen Bi6Fe2Ti2(NbCo)0.5O18 (BFTNCO) represents the largest remanent magnetization Mr of 0.93emu/g among all the samples, which can be attributed to the combination of a short lattice parameter c and a large lattice distortion as well as more magnetic ions in a unit cell. The room-temperature dc conductivity of BFTNCO is one order magnitude lower than that of BFTO. In addition, the band gaps of Co-doped samples are about 0.2eV smaller than these of Co-free samples. This work provides a promising path forward to tailor the multiferroic and optical properties in five-layered Aurivillius compounds.  相似文献   

10.
La2O3 (2 wt%)-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 (abbreviated as BNBT6) lead-free piezoelectric ceramics were synthesized by conventional solid-state reaction. X-ray diffraction (XRD) patterns indicated that La2O3 has diffused into the lattice of BNBT6 ceramics and formed a solid solution with a pure perovskite structure. Addition of La2O3 decreased the piezoelectric properties and electrical conductivity. It was used to study the electrical conductivity of the La2O3-doped BNBT6 lead-free piezoelectric ceramics combined with electrical modulus and impedance plots at the temperature range over 788–873 K. The values of activation energy derived from the electrical impedance and modulus were found to be 0.51 and 0.50 eV, respectively. The discrepancy between activation energy of relaxation frequency and the activation energy (0.25 eV) of dc electrical conductivity might have been due to a short-range migration or hopping of single ionized oxygen vacancy and a long-range migration or hopping of charge carriers over the whole disordered system, respectively.  相似文献   

11.
The (Bi1/9Na2/3)(Mn1/3Nb2/3)O3 ceramics with perovskite structure were sintered. The XRD test proved that the samples are cubic (a?=?3.920?±?0.001?Å). Microstructure and atomic composition were determined with a SEM (JSM-5410) equipped with energy dispersion X-ray analyser (ISIS-300). The fluctuation in the chemical composition was found indicating on local disorder. Broadband dielectric spectroscopy in the range 10?1–3?·?107?Hz was applied within the range of 100–650?K. The real, ?′(f,?T), and imaginary, ?″(f,?T), parts of complex dielectric permitivity characteristics, both in the temperature and frequency domain, show relaxation processes partially covered by electric conductivity. At high temperatures the electric conductivity exhibits a thermally activated behaviour σ(f,?T)?∝?exp(?E a/kT) but the variable range hopping (VRH) dependence σ?∝?exp[?(T 0/T)1/4] is manifested at low temperatures. The derivatives technique in the frequency (??log??/??log?ω) and temperature (??log??/?T) domain enabled various relaxation processes to be distinguished. The data converted to electric modulus representation, M*(f,?T)?=?1/?*, exhibited clearly resolved relaxation peaks. The relaxation times obtained from the peaks position show a slightly non-Arrhenius temperature behaviour with the activation energy varying in 0.4–0.6?eV range and characteristic time of the electric conductivity relaxation of the order of 10?12?s. The relaxation times can be fitted at better accuracy with the VRH dependence where T 0 are of the order of 108?K. It is shown that the low frequency ac-conductivity converges to dc-conductivity and the relation σ(0)?~?ωm?~?τm ?1 typical for the disordered solids applies. The conduction current relaxation relationship behaves in accord with the VRH system: σdc?∝?(T/T 0)q (e 2/kT) ωc, where ωc?=?νph exp[?(T 0/T)1/4] is valid for the locally disordered (Bi1/9Na2/3)(Mn1/3Nb2/3)O3 compound.  相似文献   

12.
A sample of Gd2CuO4 (GCO) has been prepared through the solid state reaction technique. Dielectric properties of this material have been measured in detail as functions of temperature (between 285 and 450 K) and frequency (20 Hz-10 MHz). A step-like increase below 330 K and a broad peak around 360 K were observed in the real part of the permittivity (ε′) which were found to be originated from the oxygen vacancy hopping motions that cause a dipolar relaxation, followed by a Maxwell-Wagner relaxation as the hopping carriers are blocked by the interfaces and surfaces of the sample.  相似文献   

13.
Among Aurivillius layer-structured materials, CaBi2Nb2O9 is a best potential candidate for ultrahigh-temperature applications because of its highest Curie temperature of about 940 °C. In this paper, (1-x)CaBi2Nb2O9-xBaZr0.2Ti0.8O3 composite ceramics were prepared by conventional solid-state sintering method. The dielectric results show that the introduction of BaZr0.2Ti0.8O3 not only increases the permittivity of the material, but also reduces its dielectric loss. The optimum electrical properties were obtained in the x = 0.01 sample with piezoelectric coefficient (d33) of 15.1 pC/N and high ferroelectric remnant polarization (Pr) of 9.9 μC/cm2. Furthermore, the composite samples show good thermal depoling performance, the d33 of the x = 0.01 sample is 13.8 pC/N, which is about 91% of the initial value after depoling at 800 °C. Therefore, (1-x)CaBi2Nb2O9-xBaZr0.2Ti0.8O3 is one of the candidates for high temperature piezoelectric materials.  相似文献   

14.
采用氧化物固相反应法,制备出纯氧化铝陶瓷及其分别掺杂稀土元素钇和镧的陶瓷样品.测量了样品的结构、介电特性和热导性能;研究了烧结温度对掺杂不同稀土元素的陶瓷样品的性能的影响.X射线衍射结果表明1500℃烧结后陶瓷样品形成了单一的固溶体.而氧化铝的热导率达到8.60W/(m·K),样品的介电性能稳定.我们发现掺杂Y3+和La3+的氧化铝陶瓷存在介电弛豫现象,并对该现象进行了机理分析.  相似文献   

15.
《Current Applied Physics》2020,20(9):1019-1025
(Li1+, Al3+) co-doped Ni0.5Zn0.5Fe2O4 ferrites, Ni0.5-xZn0.5-xLixAlxFe2O4 (x = 0.000, 0.025, 0.050 and 0.100), were synthesized by the sol-gel auto-combustion method. X-ray diffraction (XRD), field emission scanning electronic microscope (FESEM), vibrating sample magnetometer (VSM) and LCR meter were used to investigate the structural, magnetic and dielectric properties. Results of XRD and SEM indicate that both doping amount and calcination temperature play significant roles in crystal structure and grain growth. Also, it can be observed that the saturation magnetization and the coercivity change in a noticeable manner. The Ni0.475Zn0.475Li0.025Al0.025Fe2O4 ferrite sintered at 1200 °C has a relatively low coercivity value (62.93 Oe) and the largest saturation magnetization (110.95 emu/g). Besides, dielectric behavior is also improved by Li1+ and Al3+ co-doping.  相似文献   

16.
Lead-free piezoelectric ceramics (1 − x − y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBiGaO3 have been fabricated by an ordinary sintering technique, and their structure and electrical properties and depolarization temperature have been studied. The results of X-ray diffraction reveal that Bi0.5K0.5TiO3 and BiGaO3 diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure. An obvious change in microstructure with increasing concentration of Bi0.5K0.5TiO3 and BiGaO3 was observed. The piezoelectric constant d33 and the electromechanical coupling factor kp of the ceramics attain maximum values of 165 pC/N and 0.346 at y = 0.01(x = 0.18) and x = 0.21(y = 0.01), respectively. The temperature dependence of dielectric constant indicates an obvious relaxor characteristic with strong frequency dependence of dielectric constant. The depolarization temperature decreased with increasing content of BiGaO3 and first decreases and then increases with increasing amount of Bi0.5K0.5TiO3.  相似文献   

17.
Aurivillius SrBi2(Nb0.5Ta0.5)2O9 (SBNT 50/50) ceramics were prepared using the conventional solid-state reaction method. Scanning electron microscopy was applied to investigate the grain structure. The XRD studies revealed an orthorhombic structure in the SBNT 50/50 with lattice parameters a=5.522 Å, b=5.511 Å and c=25.114 Å. The dielectric properties were determined by impedance spectroscopy measurements. A strong low frequency dielectric dispersion was found to exist in this material. Its occurrence was ascribed to the presence of ionized space charge carriers such as oxygen vacancies. The dielectric relaxation was defined on the basis of an equivalent circuit. The temperature dependence of various electrical properties was determined and discussed. The thermal activation energy for the grain electric conductivity was lower in the high temperature region (T>303.6 °C, Ea−ht=0.47 eV) and higher in the low temperature region (T<303.6 °C, Ea−lt=1.18 eV).  相似文献   

18.
《Current Applied Physics》2014,14(3):407-414
Efforts have been made in this work to enhance the dielectric properties of SrBi2Nb2O9 (SBN) by partial substitution of Zr4+ for Nb5+. Systematic investigations on structure, microstructure, dielectric and impedance properties of the SrBi2(Nb2−(4/5)xZrx)O9 [where, x = 0, 0.1 and 0.2] ceramic samples were carried out to understand the effect of substitution of Zr4+ for Nb5+ in SrBi2Nb2O9. The X-ray diffraction (XRD) investigations indicated that the lattice volume of SrBi2(Nb2− (4/5)xZrx)O9 with x = 0.1 and 0.2 decreases compared to SBN. The SEM investigations revealed an increase in the size of grains and the change on shape of grains to elongated plate shaped structure with the increase of x (x = 0.1 and 0.2) in SrBi2(Nb2−(4/5)xZrx)O9. Higher Curie temperature and enhanced peak dielectric constant at the Curie temperature were observed for both the SrBi2(Nb2−(4/5)xZrx)O9 with x = 0.1 and 0.2 ceramic samples compared to SBN. Among the investigated compositions the higher Curie temperature and enhanced peak dielectric constant at the Curie temperature was observed for SrBi2(Nb2−(4/5)xZrx)O9 with x = 0.1.  相似文献   

19.
《Current Applied Physics》2020,20(7):866-870
(Li + Nb) co-doped (Li + Nb)xFe2-xO3 (with x = 0.0005, 0.005, 0.05, and 0.1) ceramics were prepared by sol-gel method. Their structural, dielectric, humidity, and magnetic properties were investigated. Colossal permittivity (~104) was approached or achieved in all doped samples even with a very small doping level of x = 0.0005. The colossal permittivity behavior is composed of two dielectric relaxations with the low-temperature one being a polaron relaxation due to electrons hopping between Fe3+ and Fe4+ ions and the high-temperature one being a Maxwell-Wagner relaxation caused by humidity-sensing properties.  相似文献   

20.
采用氧化固相法制备了(1-x)(Bi0.5Na0.5)TiO3-xBa(Ti0.95Zr0.05)O3(BNT-BZT)陶瓷,其中掺入量x的值分别为0,0.04,0.05,0.06,0.07.研究了BNT-BZT体系陶瓷的准同型相界以及陶瓷材料的微观结构和性能之间的关系,并探讨了陶瓷的介电性能和铁电等性能.通过探究Ba(Ti,Zr)O3(BZT)掺杂量对BNT 各性能的影响得出了当掺杂量x=0.05得到结构较为致密,介电,铁电性能较好的样本,对工业化研究和生产有重要的意义  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号