首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collisions of high Mach number flows occur frequently in astrophysics, and the resulting shock waves are responsible for the properties of many astrophysical phenomena, such as supernova remnants, Gamma Ray Bursts and jets from Active Galactic Nuclei. Because of the low density of astrophysical plasmas, the mean free path due to Coulomb collisions is typically very large. Therefore, most shock waves in astrophysics are “collisionless”, since they form due to plasma instabilities and self-generated magnetic fields. Laboratory experiments at the laser facilities can achieve the conditions necessary for the formation of collisionless shocks, and will provide a unique avenue for studying the nonlinear physics of collisionless shock waves. We are performing a series of experiments at the Omega and Omega-EP lasers, in Rochester, NY, with the goal of generating collisionless shock conditions by the collision of two high-speed plasma flows resulting from laser ablation of solid targets using ∼1016 W/cm2 laser irradiation. The experiments will aim to answer several questions of relevance to collisionless shock physics: the importance of the electromagnetic filamentation (Weibel) instabilities in shock formation, the self-generation of magnetic fields in shocks, the influence of external magnetic fields on shock formation, and the signatures of particle acceleration in shocks. Our first experiments using Thomson scattering diagnostics studied the plasma state from a single foil and from double foils whose flows collide “head-on”. Our data showed that the flow velocity and electron density were 108 cm/s and 1019 cm−3, respectively, where the Coulomb mean free path is much larger than the size of the interaction region. Simulations of our experimental conditions show that weak Weibel mediated current filamentation and magnetic field generation were likely starting to occur. This paper presents the results from these first Omega experiments.  相似文献   

2.
One branch of work in the laboratory astrophysics community has been focused on developing the understanding of hydrodynamic mixing in core-collapse supernovae (ccSNe) by the Rayleigh–Taylor instability. Experiments studying these processes in the past have been limited to planar systems in large part due to limitations of drive energy. The National Ignition Facility (NIF) is now capable of providing experiments with far more energy than has been previously available on laser facilities, enabling supernova-relevant hydrodynamics in a diverging system. This paper focuses on a proposed design in which hydrodynamic instabilities develop from an aspheric blast-wave driven through multiple, coupled interfaces in a hemispheric target in which the relative masses of the layers are scaled to those within the ccSNe progenitor star. The simulations investigate the diagnosability and experimental value of different designs using a variety of drive conditions.  相似文献   

3.
There are many practical situations when jets are emanating from non‐axis‐symmetric apertures, yet numerical simulations of such three‐dimensional jets are scarce and most of them have failed to reproduce some of the unique flow features. Examples of this type of jets are gas leaks from flanges. These can be treated as jets issuing from high aspect ratio rectangular orifices. The present work consists of a series of large eddy simulations typifying such jets using different inflow boundary conditions. Good agreement with available experiments was observed provided appropriate boundary conditions were present. A discrete method for formulating turbulence data with a known energy spectrum for an inflow condition is outlined and evaluated with three other inflow conditions–a steady uniform profile, a steady parabolic profile and pseudo‐random noise. The implementation of the new inlet condition results in a more realistic centreline velocity decay where the division between the end of the potential core region and the start of the characteristic decay region is clearly visible. Large velocity oscillations are also observed in the final quarter of the domain (15–20 slot widths downstream). Similar oscillations have been observed in real jets. Off‐centre mean velocity peaks are present along the major axis 10 slot widths downstream of the exit in all the simulations. The peaks are approximately 3% of the centreline velocity. The presence of the off‐centre peaks are proved to be independent of jet inflow boundary conditions and an explanation for the mechanism causing the off‐centre peaks is given. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Experiments have been performed in which fs-timescale laser pulses, focused to an intensity ~1016 W cm?2, are able to directly create and interact with solid density plasma (1). We have performed one-dimensional simulations of the experiments with a kinetic model which solves Maxwell's equations coupled to the Fokker–Planck equation enabling us to self-consistently model the non-local heat flow and absorption process. We find that the heat-flux is magnetized by the laser field and is inhibited relative to the Spitzer value.  相似文献   

5.
王殿恺  文明  王伟东  卿泽旭 《力学学报》2018,50(6):1337-1345
纳秒脉冲激光具有峰值功率密度高、易于击穿空气形成等离子体这一突出优势,在降低超声速波阻方面具有重要应用价值.以深刻揭示减阻机理为目的,针对激光与正激波相互作用这一基本物理现象开展实验研究.发展高精度纹影技术以测量复杂激波结构,时间分辨率达到 30ns,空间分辨率达到 1mm;搭建快速~PIV 实验系统以定量测量流场速度和涡量,时间分辨率达到 500ns.探明了激光等离子体引致的球面激波和高温低密度区域特性,揭示了激光等离子体在正激波冲击下的流动特性与演化规律,并结合数值模拟结果阐明了脉冲激光等离子体降低超声速波阻的根本原因.研究表明:激光等离子体引致激波的初始马赫数随着激光能量而增大,形状由水滴形逐渐发展为球面形,传播速度随着时间降低,在50$\mu$s 后接近于声速;高温低密度区域初始近似于球形,而后从激光入射方向的下游开始失稳,形成尖刺结构;在正激波冲击下,高温低密度区域演化为上下对称的双涡环结构,尺寸随着激光能量而增大.涡的卷吸和逆流可改变飞行器头部激波结构,是流场重构的重要形式,引起飞行器表面压力的大幅降低,是引起超声速飞行器波阻降低的重要机理.   相似文献   

6.
Fluidic oscillators for flow control   总被引:1,自引:0,他引:1  
Fluidic oscillators are based on the bi-stable states of a jet (or a pair of jets) of fluid inside a specially designed flow chamber. These produce sweeping or pulsing jets of high exit velocity (~sonic exit velocities) extending the control authority achievable to high subsonic flows. Sweeping and pulsing jets with frequencies ranging from 1 to 20 kHz have been obtained with meso-scale (nozzle sizes in the range of 200 μm–1 mm) fluidic oscillators with very low mass flow rates of the order of 1 g/s. Such actuators have been recently used in laboratory scale experiments for separation control and cavity noise control with significant promise to be implemented in full-scale systems. In this paper, we provide a historical background of fluidic oscillators and methods to produce either sweeping or pulsing jets, their typical frequency, flow rate, and scaling characteristics. Some challenges in detailed characterization of such actuators through measurement will be presented. We will also discuss some of the system integration issues of translating this technology into practice. This is followed by a brief discussion of the need for further development of such actuators and the understanding of the mechanism by which flow control is achieved by these sweeping jets.  相似文献   

7.
In this work scaling laws in laboratory astrophysics are studied. It is shown that mathematical models governing radiation hydrodynamics-driven phenomena are invariant under the homothetic group transformation and can be rescaled according to several types of scaling laws. This property is valid for both optically thick and optically thin materials and it allows a correct and rigorous connection between astrophysical objects or phenomena and laboratory experiments. This approach is applied to astrophysical jets and radiative shocks where advantages as well as difficulties are pointed out.  相似文献   

8.
Ultra-intense laser irradiating high-Z solid targets has become a new, powerful and efficient tool to create electron–positron pairs and intense gamma-ray beams. This paper reviews the recent developments in this field, both in theory and experiments. We will also discuss potential astrophysical applications of such laboratory experiments using ultra-intense lasers.  相似文献   

9.
Nonthermal acceleration of relativistic electrons in a wakefield induced by large amplitude light waves is discussed. It is considered that large amplitude light waves are excited as the precursor waves in the upstream of relativistic perpendicular shocks in the universe, and that the wakefield is excited by the light ponderomotive force. Thus, the wakefield acceleration is possible in the astrophysical circumstances. We model such shock environments in a laboratory plasma by substituting an intense laser pulse for the large amplitude light waves. By performing 2-D particle-in-cell simulations, we discuss the properties of the wakefield acceleration in various laser and plasma conditions. With the relativistic intensities of the laser pulses, the electrons are nonthermally accelerated by the wakefield. When the pulse length and the spot size are comparable to the electron inertial scale, the energy distribution functions of the electrons can be monoenergetic. On the other hand, when the pulse spatial scales are much larger than the electron inertial scale, which occurs in the case of the shock precursor light waves, the distribution functions are universally represented by power law spectra with an index of 2, independent of the laser intensity, the plasma density, and the laser pulse size.  相似文献   

10.
11.
K-shell spectra of solid Al excited by petawatt picosecond laser pulses have been investigated at the Vulcan PW facility. Laser pulses of ultrahigh contrast with an energy of 160 J on the target allow studies of interactions between the laser field and solid state matter at 1020 W/cm2. Intense X-ray emission of KK hollow atoms (atoms without n = 1 electrons) from thin aluminum foils is observed from optical laser plasma for the first time. Specifically for 1.5 μm thin foil targets the hollow atom yield dominates the resonance line emission. It is suggested that the hollow atoms are predominantly excited by the impact of X-ray photons generated by radiation friction to fast electron currents in solid-density plasma due to Thomson scattering and bremsstrahlung in the transverse plasma fields. Numerical simulations of Al hollow atom spectra using the ATOMIC code confirm that the impact of keV photons dominates the atom ionization. Our estimates demonstrate that solid-density plasma generated by relativistic optical laser pulses provide the source of a polychromatic keV range X-ray field of 1018 W/cm2 intensity, and allows the study of excited matter in the radiation-dominated regime. High-resolution X-ray spectroscopy of hollow atom radiation is found to be a powerful tool to study the properties of high-energy density plasma created by intense X-ray radiation.  相似文献   

12.
Recent time-series observations of shock waves in stellar jets taken with the Hubble Space Telescope reveal localized bright knots that persist over nearly 15 years. While some of these features represent shock fronts caused by variable velocities in the flow, others appear at the intersection points between distinct bow shocks. Theoretically, when the angle between two intersecting shocks exceeds a certain critical value, a third shock (Mach stem) should form. Because Mach stems form perpendicular to the direction of flow, incoming particles encounter a normal shock instead of an oblique one, which results in brighter emission at this location. To study this phenomenon in a controlled laboratory setting, we have carried out experiments on the Omega laser aimed at understanding the formation, growth, and destruction of Mach stems in the warm dense plasma regime. Our experimental results indicate how the growth rate depends upon included angle, and numerical simulations indicate that it may be possible to stabilize an already-formed Mach stem below the critical angle when certain conditions are satisfied.  相似文献   

13.
Implosion and heating experiments at the Institute of Laser Engineering, Osaka University on Fast Ignition (FI) targets for the FIREX-1 project have been performed with Gekko-XII laser for implosions and LFEX laser for heating. We tried to reduce the prepulse level in the LFEX laser system and have improved the plasma diagnostics to observe the plasma in the harsh hard X-ray environment. A plastic (CD) shell target, 7-μm thick and 500 μm in diameter with a hollow gold cone was used in this experiment to guide the short-pulse laser at the time of the maximum compression. The shell target was imploded with 9 or 12 beams of Gekko-XII laser (527 nm) with energy of 300 J/beam in a 1.5 ns pulse. Two of the four LFEX laser (1053 nm) beams were injected into the inside bottom of the cone with an energy up to 0.7 kJ/beam in a 1.5 ps pulse at the time around the maximum implosion. We have observed neutron enhancement up to 3.5 × 107 with total heating energy of 300 J, which is higher than the yield obtained in the previous experiment in 2002 [R. Kodama et al. Nature 418, 933 (2002)]. We found the estimated heating efficiency is at a level of 10–20%. Fuel heating to 5 keV is expected when the full output of LFEX is used.  相似文献   

14.
Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element modeling coupled with in-house CFD code GenlDLEST has been used to simulate a bed with nine jets. The results are compared with published experiments. Mono dispersed particles of size 550 ~m are used with 1.4 times the minimum fluidization velocity of the particles. Both two and three dimensional computations have been performed. To the best of our knowledge, the results presented in this paper are the first full 3D simulations of a fluidized bed performed with multiple jets. Discrepancies between the experiment and simulations are discussed in the context of the dimensionality of the simulations. The 2D solid fraction profile compares well with the experiment close to the distributor plate. At higher heights, the 2D simulation over-predicts the solid fraction profiles near the walls. The 3D simulation on the other hand is better able to capture the solid fraction profile higher up in the bed compared to that near the distributor plate. Similarly, the normalized particle velocities and the particle fluxes compare well with the experiment closer to the distributor plate for the 2D simulation and the freeboard for the 3D simulation, respectively. A lower expanded bed height is predicted in the 2D simulation compared to the 3D simulation and the experiment. The results obtained from DEM computations show that a 2D simulation can be used to capture essential jetting trends near the distributor plate regions, whereas a full scale 3D simulation is needed to capture the bubbles near the freeboard regions. These serve as validations for the experiment and help us understand the complex jet interaction and solid circulation patterns in a multiple jet fluidized bed system.  相似文献   

15.
Magnetic towers represent one of two fundamental forms of MHD outflows. Driven by magnetic pressure gradients, these flows have been less well studied than magneto-centrifugally launched jets even though magnetic towers may well be as common. Here we present new results exploring the behavior and evolution of magnetic tower outflows and demonstrate their connection with pulsed power experimental studies and purely hydrodynamic jets which might represent the asymptotic propagation regimes of magneto-centrifugally launched jets. High-resolution AMR MHD simulations (using the AstroBEAR code) provide insights into the underlying physics of magnetic towers and help us constrain models of their propagation. Our simulations have been designed to explore the effects of thermal energy losses and rotation on both tower flows and their hydro counterparts. We find these parameters have significant effects on the stability of magnetic towers, but mild effects on the stability of hydro jets. Current-driven perturbations in the Poynting Flux Dominated (PDF) towers are shown to be amplified in both the cooling and rotating cases. Our studies of the long term evolution of the towers show that the formation of weakly magnetized central jets within the tower are broken up by these instabilities becoming a series of collimated clumps which magnetization properties vary over time. In addition to discussing these results in light of laboratory experiments, we address their relevance to astrophysical observations of young star jets and outflow from highly evolved solar type stars.  相似文献   

16.
X-ray Thomson scattering is being developed as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. X-ray laser sources have always been of interest because of the need to have a bright monochromatic X-ray source to overcome plasma emission and eliminate other lines in the background that complicate the analysis. With the advent of the X-ray free electron laser (X-FEL) at the SNAL Linac Coherent Light Source (LCLS) and other facilities coming online worldwide, we now have such a source available in the keV regime. An important challenge with X-ray Thomson scattering experiments is understanding how to model the scattering for partially ionized plasmas. Most Thomson scattering codes used to model experimental data greatly simplify or neglect the contributions of the bound electrons to the scattered intensity. In this work we take the existing models of Thomson scattering that include elastic ion–ion scattering and inelastic electron–electron scattering and add the contribution of bound electrons in the partially ionized plasmas. Except for hydrogen plasmas, most plasmas studied today have bound electrons and it is important to understand their contribution to the Thomson scattering, especially as new X-ray sources such as an X-FEL will allow us to study much higher Z plasmas. To date, most experiments have studied hydrogen or beryllium plasmas. We first analyze existing experimental data for beryllium to validate the code. We then consider several higher Z materials such as Cr and predict the existence of additional peaks in the scattering spectrum that require new computational tools to understand. For a Sn plasma, we show that bound contributions change the shape of the scattered spectrum in a way that would change the plasma temperature and density inferred from experiment.  相似文献   

17.
We present the results from laboratory experiments and fully resolved simulations pertaining to finite-release turbulent density flows with a non-axisymmetric initial shape. First, we demonstrate that the effects of the initial shape influence the current’s evolution well into the long-time phase which would corresponds to the inertial self-similar phase in the case of planar or axisymmetric configurations. Then, we identify the physical mechanisms responsible for this dependence and propose a new model capable of capturing the dynamics of such releases. Finally, we show that this dependence on the initial configuration is robust for various types of gravity currents over a wide range of parameters such as Reynolds number, density ratio, and aspect ratio.  相似文献   

18.
A molecular Rayleigh scattering technique is utilized to measure gas temperature, velocity, and density in unseeded gas flows at sampling rates up to 10 kHz, providing fluctuation information up to 5 kHz based on the Nyquist theorem. A high-power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to a Fabry–Perot interferometer for spectral analysis. Photomultiplier tubes operated in the photon counting mode allow high-frequency sampling of the total signal level and the circular interference pattern to provide dynamic density, temperature, and velocity measurements. Mean and root mean square velocity, temperature, and density, as well as power spectral density calculations, are presented for measurements in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA John H. Glenn Research Center at Lewis Field. The Rayleigh measurements are compared with particle image velocimetry data and computational fluid dynamics predictions. This technique is aimed at aeronautics research related to identifying noise sources in free jets, as well as applications in supersonic and hypersonic flows where measurement of flow properties, including mass flux, is required in the presence of shocks and ionization occurrence.  相似文献   

19.
This paper is primarily an assessment of laser-induced water jets for boring rock surfaces. It also reports the result of preliminary experiments of pulsed Ho:YAG laser-induced jets applied to drill a submerged rock specimen. The irradiation of pulsed Ho:YAG laser beams at 3 Hz inside a thin metal tube produces intermittent water vapor bubbles which result in liquid jet discharge from the exit of the metal tube. The laser-induced water jets are visualized by shadowgraphs and images are recorded by a high-speed digital video camera. High stagnation pressures were eventually generated by the jet impingements. Simultaneously shock waves of about 22.7 MPa were generated at bubble collapse, which effectively cracked the surface of the rock specimens. Repeated exposures of these laser-induced jets against submerged rock specimens have a potential to practically bore holes on rock surfaces.  相似文献   

20.
Fluidized beds with multiple jets have widespread industrial applications. The objective of this paper is to investigate the jet interactions and hydrodynamics of a fluidized bed with multiple jets. Discrete element modeling coupled with in-house CFD code GenIDLEST has been used to simulate a bed with nine jets. The results are compared with published experiments. Mono dispersed particles of size 550 μm are used with 1.4 times the minimum fluidization velocity of the particles. Both two and three dimensional computations have been performed. To the best of our knowledge, the results presented in this paper are the first full 3D simulations of a fluidized bed performed with multiple jets. Discrepancies between the experiment and simulations are discussed in the context of the dimensionality of the simulations. The 2D solid fraction profile compares well with the experiment close to the distributor plate. At higher heights, the 2D simulation over-predicts the solid fraction profiles near the walls. The 3D simulation on the other hand is better able to capture the solid fraction profile higher up in the bed compared to that near the distributor plate. Similarly, the normalized particle velocities and the particle fluxes compare well with the experiment closer to the distributor plate for the 2D simulation and the freeboard for the 3D simulation, respectively. A lower expanded bed height is predicted in the 2D simulation compared to the 3D simulation and the experiment. The results obtained from DEM computations show that a 2D simulation can be used to capture essential jetting trends near the distributor plate regions, whereas a full scale 3D simulation is needed to capture the bubbles near the freeboard regions. These serve as validations for the experiment and help us understand the complex jet interaction and solid circulation patterns in a multiple jet fluidized bed system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号