首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two novel glucose oxidase (GOx) enzyme electrodes based on the copolymer of glycidyl methacrylate with 3-thienylmethyl methacrylate (poly(GMA-co-MTM)) with and without polypyrrole (PPyr) coating were prepared and employed in the amperometric determination of glucose levels. The effect of PPyr coating on the electrode properties was investigated in detail. Cyclic voltammetry studies showed that electrical conductivity of electrode B with PPyr coating (poly(GMA-co-MTM)/GOx/PPyr) was substantially higher than that of electrode A (poly(GMA-co-MTM)/GOx). On the other hand, electrode A showed better results in terms of sensitivity (10 nA/mM), limit of detection (50.2 μM), and response time (5 s). Electrodes A and B gave linear responses to the glucose concentrations in the range of 2–20 and 2–14 mM, respectively. The ranges of linearity for both enzyme electrodes are sufficient for the determination of physiological glucose concentrations in human blood. Moreover, PPyr coating of electrode B did not result in further stabilization of the enzyme electrode.  相似文献   

2.
3.
A facile hydrothermal route was used to synthesize silver nanoparticle (AgNP)-decorated microflower molybdenum disulfide (MoS2-MF) for bio-electrochemical platform fabrication to detect nonenzymatic glucose concentration. The morphologies of the materials were studied by scanning electron microscopy, and their structural characteristics were analyzed by X-ray diffractometry and energy-dispersive X-ray spectroscopy. The electrochemical characteristics of the AgNPs/MoS2-MF/PtE biosensor were studied by cyclic voltammetry. The obtained data indicated that the developed nonenzymatic glucose sensor has a large linear response between 1.0 and 15.0 mM, a limit of detection of as low as 1.0 mM, and a sensitivity of 46.5 μA nM−1 cm−2. The biosensor also displayed outstanding selectivity, stability, reproducibility, and repeatability. Additionally, the AgNPs/MoS2-MF/PtE biosensor was utilized to detect glucose concentration in real sample and showed practical application potential for glucose detection.  相似文献   

4.
《Current Applied Physics》2020,20(9):1090-1096
In this study, the effects of the morphological characteristics of MoS2 nanomaterials on the glucose sensing of electrochemical biosensors were explored. Nanostructured MoS2 materials, including nanoparticles (NPs), nanoflowers (NFs), and nanoplatelets (NPLs), were prepared via a simple hydrothermal method. The structure and morphological characteristics of MoS2 nanomaterials were examined through X-ray diffraction, field emission scanning electron microscopy, and Raman spectroscopy. Electrochemical properties were analyzed through cyclic voltammetry. Results showed that the obtained sensitivity was 64, 68.7, and 77.6 μAmM−1 cm−2 for MoS2 NP-, MoS2 NF-, and MoS2 NPL-based biosensors, respectively. The limit of detection (LOD) of all MoS2-based glucose biosensors was 0.081 mM. In addition, the pH, temperature, glucose oxidase (GOx) concentration, reproducibility, specificity, and stability of glucose biosensors with different MoS2 morphologies were also investigated and indicated the oxidation current response of the MoS2 NPL-based glucose biosensor was higher than that of MoS2 NF- and NP-based biosensors.  相似文献   

5.
Interactions of luminescence, water soluble ZnS nanoparticles (NPs) with flavins and glucose oxidase have been thoroughly investigated through optical spectroscopy. The photoluminescence of ZnS nanoparticles was quenched severely (~60%) by riboflavin while other flavins such as flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) show quenching to different extents under analogous conditions. However, interestingly no effect in luminescence intensity of ZnS NPs was observed with protein bound flavins such as in glucose oxidase. Fluorescence lifetime measurement confirmed the quenching to be static in nature. Scavenging of photo-generated electron of ZnS nanoparticles by the flavin molecules may be attributed to the decrease in luminescence intensity. Quenching of ZnS nanoparticles with flavins follows the linear Stern–Volmer plot. The Stern–Volmer constants decreased in the following order: KS?V (Riboflavin)> KS?V (FAD)> KS?V (FMN). This interaction study could generate useful protocol for the fluorimetric determination of riboflavin (vitamin B2) content and also riboflavin status in biological systems.  相似文献   

6.
We investigate the electromagnetic field interaction with a glucose aqueous solution using a microwave dielectric waveguide probe to evaluate the glucose concentrations. A microwave dielectric waveguide probe allows observation of the small variation of the glucose concentration changes in the range of 0–300 mg/ml by measuring the change of the microwave reflection coefficient. We could observe the effect of concentration change of glucose with a detectable resolution up to 0.5 mg/ml at an operating frequency of about f = 2.0–2.5 GHz. The change of the glucose concentration is directly related to the change of the reflection coefficient due to the electromagnetic interaction between the dielectric waveguide resonator and the glucose aqueous solution. The operational principal is explained by a plane-wave solution model. A glucose biosensor using a microwave dielectric waveguide probe provides a unique approach for glucose monitoring.  相似文献   

7.
The PANI films have been synthesized electrochemically and are used as matrix for immobilization of glucose oxidase (GOD) and lactate dehydrogenase (LDH) enzymes. The temporal aspects of anion self-exchange in PANI films have been investigated. The exchange of bulkier tosylate–ferricyanide ion with Cl ion has been monitored by photometry and electrochemical techniques. The relative changes in porosity brought about by self-exchange have been experimentally determined to be 323 and 2125/k in tosylate-exchanged and ferricyanide-exchanged polyaniline films, respectively. It is seen that the polyaniline films exhibit enhanced loading of glucose oxidase after a self-ion exchange, and, hence they can be used for the fabrication of a third generation glucose biosensor.Lactate is determined by the photometric detection of NADH formed in the reaction catalysed by LDH. Studies have been carried out with PANI as a matrix for the immobilization of LDH and its feasibility as a biosensor. The results of the photometric and amperometric measurements conducted on such LDH/PANI electrodes show a response to pyruvate concentration upto 0.45 mM, a response time of 90 s and a shelf life of about two weeks.  相似文献   

8.
Urease enzyme was covalently attached on the poly(glycidylmethacrylate) (PGMA)-grafted iron oxide nanoparticles on Au electrode for the fabrication of urea biosensor. The telomere of poly(glycidylmethacrylate) (PGMA) with a trimethoxysilyl terminal group was synthesized by telomerization of glycidylmethacrylate. Iron oxide nanoparticles were coated with telomere of poly(glycidylmethacrylate) in order to obtain good enzyme immobilization platform. The telomere and nanoparticles were characterized by using Fourier transform infrared (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and thermal gravimetric analysis (TGA). The biosensor’s potentiometric response was measured as a function of urea concentration in phosphate buffer solution (10 mM, pH 7.5) and showed a linear range of 0.25–5.0 mM urea. The produced biosensor exhibited a good response time of ~8 s and was stable for about two months. The basic features (optimum pH, optimum temperature, interference and storage stability) of the enzyme electrode were determined.  相似文献   

9.
The effect of atomic oxygen adsorption on the structure and electronic properties of monolayer hexagonal boron nitride (h-BN) grown on Ir(111) has been studied using near edge X-ray absorption fine structure spectroscopy (NEXAFS), photoelectron spectroscopy (PES), and low-energy electron diffraction (LEED). It has been shown that the oxidation of the h-BN monolayer occurs through a gradual substitution of N by O in the h-BN lattice. This process leads to the formation of defect sites corresponding to three different types of the B atom environment (BN3 ? xOx with x = 1,2,3). The oxidation of the h-BN monolayer is very different from the case of graphene on Ir(111), where adsorption of atomic oxygen results mainly in the formation of epoxy groups [J. Phys. Chem. C. 115, 9568 (2011)]. A post-annealing of the h-BN monolayer after oxygen exposure results in further destruction of the B–N bonds and formation of a B2O3-like structure.  相似文献   

10.
《Current Applied Physics》2014,14(3):396-402
High performance lead (Pb)-free piezoelectric ceramics with excellent piezoelectric properties is in great demand for sensor and actuator applications. Barium zirconate titanate–barium calcium titanate [xBZT–(1 − x)BCT] (x = 0.5) is one such lead free system, which exhibits high piezoelectric properties similar to lead zirconate titanate (PZT). In this study we report the synthesis and characterization of this lead free [xBZT–(1 − x)BCT] (x = 0.5) via wet chemical sol–gel method. Calcination of the BZT–BCT precursor only at 1000 °C (against 1300 °C reported in the literature) for 4 h resulted in formation of single phase nanoparticles (<50 nm) as confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. Highly dense and homogenous microstructure with 95% of the theoretical density was obtained by solid-state sintering of the green pellets at 1550 °C. Remanent polarization (Pr) of 11.55 μC/cm2 and relative permittivity of 20,020 at the Curie temperature of 95 °C were obtained. Electrically poled BZT–BCT ceramics samples exhibited high piezoelectric charge coefficients, d33 ∼ 530 pC/N, d33* ∼ 942 pm/V, large electromechanical coupling coefficient kp ∼ 0.45 and a large strain of 0.15%, which are comparable to those of lead based piezoelectric ceramics. The excellent piezoelectric properties of this sol–gel derived BZT–BCT system has been analyzed and correlated to its structure in this report.  相似文献   

11.
Ultrasound has potential to be used for disinfection, and its antimicrobial effectiveness can be enhanced in presence of natural compounds. In this study, we compared the antimicrobial effects of ultrasound at 20 kHz (US 20 kHz) or 1 MHz (US 1 MHz) in combination with carvacrol, citral, cinnamic acid, geraniol, gallic acid, lactic acid, or limonene against E. coli K12 and Listeria innocua at a constant power density in water. Compared to the cumulative effect of the individual treatments, the combined treatment of US 1 MHz and 10 mM citral generated >1.5 log CFU/mL additional inactivation of E. coli K12. Similarly, combined treatments of US 1 MHz and 2 mM carvacrol (30 min), US 20 kHz and 2 mM carvacrol, 10 mM citral, or 5 mM geraniol (15 min) generated >0.5–2.0 log CFU/mL additional inactivation in L. innocua. The synergistic effect of citral, as a presentative compound, and US 20 kHz treatment was determined to be a result of enhanced dispersion of insoluble citral droplets in combination with physical impact on bacterial membrane structures, whereas the inactivation by US 1 MHz was likely due to generation of oxidative stress within the bacteria. Combined ultrasound and citral treatments improved the bacterial inactivation in simulated wash water in presence of organic matter or during washing of inoculated blueberries but only additive antimicrobial effects were observed. Findings in this study will be useful to enhance fresh produce safety and shelf-life and design other alternative ultrasound based sanitation processes.  相似文献   

12.
《Solid State Ionics》2006,177(15-16):1335-1339
Electrochemical characteristics of lithium ruthenate (LixRuO2+0.5x·nH2O) for electrochemical capacitors' electrode material were first examined in this paper by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge–discharge tests. Results show that LixRuO2+0.5x·nH2O has electrochemical capacitive characteristic within the potential range of − 0.2–0.9 V (vs. SCE) in 1 M Li2SO4 solution. The capacitance mainly arises from pseudo-capacitance caused by lithium ions' insertion/extraction into/out of the LixRuO2+0.5x·nH2O electrode. The specific capacitance of 391 F g 1 can be delivered at 1 mA charge–discharge current for LixRuO2+0.5x·nH2O electrode with an energy density of 65.7 W h kg 1. This material also exhibits an excellent cycling performance and there is no attenuation of capacitance over 600 cycles.  相似文献   

13.
A photonic glucose biosensor incorporating a vertically coupled polymeric microring resonator was proposed and accomplished. The concentration of a glucose solution was estimated by observing the shift in the resonant wavelength of the resonator. For achieving higher sensitivity the contrast between the effective refractive index of the polymeric waveguide and that of the analyte was minimized. Actually, the effective refractive index of the polymeric waveguide (n = ∼1.390) was substantially close to that (n = ∼1.333) of the fresh solution with no glucose. The fabricated resonator sensor with the free spectral range of 0.66 nm yielded a sensitivity of ∼280 pm/(g/dL), which corresponds to ∼200 nm/RIU (refractive index units) as a refractometric sensor, and provided a detection limit of refractive index change on the order of 10−5 RIU.  相似文献   

14.
A flow injection catechol biosensor based on tyrosinase entrapped in carbon nanotube modified polypyrrole biocomposite film on a glassy carbon surface has been developed. Amperometric response was measured as a function of concentration of catechol, at a fixed bias voltage of −50 mV at a flow rate of 1 mL/min. The proposed biosensor exhibited impressive analytical performance such as a linear range between 3 and 50 μM, a short response time (10 s), a detection limit of 0.671 μM and an excellent operational (with a relative standard deviation of 0.54%) and long-term stability (85% remained after 10th week). A comparison of the analytical parameters of the developed biosensor with polypyrrole/tyrosinase film electrode was performed in the study. CNT was shown to enhance the electron transfer between the electrode and enzyme and capable to carry higher bioactivity owing to its intensified surface area.  相似文献   

15.
Biomorphic porous ZnO nanostructures were successfully synthesized via an aqueous sol–gel soaking process using pieces of apple flesh and skin as templates and employed for glucose direct electrochemical biosensor. The structure and morphology of ZnO nanostructures were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). By modifying glassy carbon electrode with the biomorphic ZnO nanostructures and Nafion, two glucose biosensors were constructed and their direct electrochemistry of glucose oxidase (GOD) was successfully investigated by cyclic voltammetry (CV). The biomorphic porous ZnO nanostructures using apple skin template (S-ZnO) were more effective in facilitating the electron transfer of immobilized GOD than that of using flesh apple template (F-ZnO). This may be a result of the unique morphology and smaller average crystallite size of the S-ZnO nanostructure. GOD immobilized on Nafion-porous S-ZnO nanostructure composite display direct, reversible, and surface-controlled redox reaction with a detection limit of 10 μM, a response time of 7 s, high sensitivity of 23.4 μA/mM cm2 and a fast heterogeneous electron transfer rate with a rate constant (ks) of 3.9 s?1. It was found that S-ZnO significantly has improved the direct electron transfer between GOD and glassy carbon electrode with good stability and reproducibility.  相似文献   

16.
PurposeTo evaluate the biophysical processes that generate specific T2 values and their relationship to specific cerebrospinal fluid (CSF) content.Materials and methodsCSF T2s were measured ex vivo (14.1 T) from isolated CSF collected from human, rat and non-human primate. CSF T2s were also measured in vivo at different field strength in human (3 and 7 T) and rodent (1, 4.7, 9,4 and 11.7 T) using different pulse sequences. Then, relaxivities of CSF constituents were measured, in vitro, to determine the major molecule responsible for shortening CSF T2 (2 s) compared to saline T2 (3 s). The impact of this major molecule on CSF T2 was then validated in rodent, in vivo, by the simultaneous measurement of the major molecule concentration and CSF T2.ResultsEx vivo CSF T2 was about 2.0 s at 14.1 T for all species. In vivo human CSF T2 approached ex vivo values at 3 T (2.0 s) but was significantly shorter at 7 T (0.9 s). In vivo rodent CSF T2 decreased with increasing magnetic field and T2 values similar to the in vitro ones were reached at 1 T (1.6 s). Glucose had the largest contribution of shortening CSF T2 in vitro. This result was validated in rodent in vivo, showing that an acute change in CSF glucose by infusion of glucose into the blood, can be monitored via changes in CSF T2 values.ConclusionThis study opens the possibility of monitoring glucose regulation of CSF at the resolution of MRI by quantitating T2.  相似文献   

17.
Following the upsurge in the study ofSi1  xGex /Si material systems for high-speed applications, we calculate the band offsets using reformulated tight-binding methods. The calculated value of 0.78 eV for the valence band offset (VBO) of pure substances is in excellent agreement with recent experimental measurements. The VBO for alloy interfaces is 0.78 x. We apply the VBO and conduction band offsets (CBO) to shift in photoluminescence and electron confinement in microstructures respectively. The calculated VBO is strongly dependent on the precursor flux ratio.  相似文献   

18.
In this study, the stable system of bilayer emulsion was fabricated by ultrasonic emulsification. The effect of chitosan (CS) addition (0.05 %-0.4 %, w/v) at pH 5.0 on the stability of rice bran protein hydrolysate-ferulic acid (RBPH-FA) monolayer emulsion was investigated. It was found that the addition of CS (0.3 %) could form a stable bilayer emulsion. The droplet size was 3.38 μm and the absolute ζ-potential value was 31.52 mV. The bilayer emulsion had better storage stability, oxidation stability and environmental stabilities than the monolayer emulsion. The results of in vitro simulations revealed the bilayer emulsion was able to deliver the β-carotene to the small intestine digestive stage stably and the bioaccessibility was increased from 22.34 % to 61.36 % compared with the monolayer emulsion. The research confirmed that the bilayer emulsion prepared by ultrasonic emulsification can be used for the delivery of hydrophobic functional component β-carotene.  相似文献   

19.
Aminated-CoFe2O4/SiO2 magnetic nanoparticles (NPs) were prepared from primary silica particles using modified StÖber method. Glucose oxidase (GOD) was immobilized on CoFe2O4/SiO2 NPs via cross-linking with glutaraldehyde (GA). The optimal immobilization condition was achieved with 1% (v/v) GA, cross-linking time of 3 h, solution pH of 7.0 and 0.4 mg GOD (in 3.0 mg carrier). The immobilized GOD showed maximal catalytic activity at pH 6.5 and 40 °C. After immobilization, the GOD exhibited improved thermal, storage and operation stability. The immobilized GOD still maintained 80% of its initial activity after the incubation at 50 °C for 25 min, whereas free enzyme had only 20% of initial activity after the same incubation. After kept at 4 °C for 28 days, the immobilized and free enzyme retained 87% and 40% of initial activity, respectively. The immobilized GOD maintained approximately 57% of initial activity after reused 7 times. The KM (Michaelis-Menten constant) values for immobilized GOD and free GOD were 14.6 mM and 27.1 mM, respectively.  相似文献   

20.
《Current Applied Physics》2014,14(3):407-414
Efforts have been made in this work to enhance the dielectric properties of SrBi2Nb2O9 (SBN) by partial substitution of Zr4+ for Nb5+. Systematic investigations on structure, microstructure, dielectric and impedance properties of the SrBi2(Nb2−(4/5)xZrx)O9 [where, x = 0, 0.1 and 0.2] ceramic samples were carried out to understand the effect of substitution of Zr4+ for Nb5+ in SrBi2Nb2O9. The X-ray diffraction (XRD) investigations indicated that the lattice volume of SrBi2(Nb2− (4/5)xZrx)O9 with x = 0.1 and 0.2 decreases compared to SBN. The SEM investigations revealed an increase in the size of grains and the change on shape of grains to elongated plate shaped structure with the increase of x (x = 0.1 and 0.2) in SrBi2(Nb2−(4/5)xZrx)O9. Higher Curie temperature and enhanced peak dielectric constant at the Curie temperature were observed for both the SrBi2(Nb2−(4/5)xZrx)O9 with x = 0.1 and 0.2 ceramic samples compared to SBN. Among the investigated compositions the higher Curie temperature and enhanced peak dielectric constant at the Curie temperature was observed for SrBi2(Nb2−(4/5)xZrx)O9 with x = 0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号