首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gallium Selenide (GaSe) thin films were grown by the electrochemical deposition (ECD) technique on Indium tin oxide (ITO) and p-Si (100) substrates. The Electron paramagnetic resonance (EPR) spectrum of GaSe thin films’ growth on ITO was recorded at room temperature. According to EPR results, the g value of an EPR signal obtained for GaSe deposited on ITO is 2.0012?±?0.0005. In/GaSe/p-Si heterojunction was irradiated with high-energy (6?MeV) and low-dose (1.53?×?1010?e??cm?2) electrons. The ideality factor of the In/GaSe/p-Si device was calculated as 1.24 and barrier height was determined as 0.82?eV from I–V measurements before irradiation. Acceptor concentration, built-in potential and barrier height of the In/GaSe/p-Si device were also obtained as 0.72?×?1014?cm?3, 0.65?eV and 0.97?eV from C–V measurements, respectively. After irradiation, the ideality factor n and barrier height Φb values of the In/GaSe/p-Si device were calculated as 1.55 and 0.781?eV, respectively. Acceptor concentration, the built-in potential and barrier height values of the In/GaSe/p-Si device have also shown a decrease after 6?MeV electron irradiation. This change in heterojunction device parameters shows that current transport does not obey thermionic emission, and thus tunneling could be active due to the defects formed by irradiation at the In–GaSe interface.  相似文献   

2.
Photoluminescence of HgCdTe epitaxial films and nanostructures and electroluminescence of InAs(Sb,P) light-emitting diode (LED) nanoheterostructures were studied. For HgCdTe-based structures, the presence of compositional fluctuations, which localized charge carriers, was established. A model, which described the effect of the fluctuations on the rate of the radiative recombination, the shape of luminescence spectra and the position of their peaks, was shown to describe experimental photoluminescence data quite reasonably. For InAs(Sb,P) LED nanoheterostructures, at low temperatures (4.2–100 K) stimulated emission was observed. This effect disappeared with the temperature increasing due to the resonant ‘switch-on’ of the Auger process involving transition of a hole to the spin-orbit-splitted band. Influence of other Auger processes on the emissive properties of the nanoheterostructures was also observed. Prospects of employing II–VI and III–V nanostructures in light-emitting devices operating in the mid-infrared part of the spectrum are discussed.  相似文献   

3.
4.
The current-voltage (I–V) and capacitance-voltage (C–V) characteristics of Ni/Cu/n-InP Schottky barrier diodes are studied over a wide temperature range, from 210 K to 420 K. The I–V characteristics display anomalous thermal behavior. The apparent barrier height decays, and the ideality factor grows at low temperatures, and the series resistances resulting from Cheung’s and Norde’s procedures are markedly temperature dependent. The nonlinearity of the Richardson plot and the strong temperature dependence of the Schottky-barrier parameters indicate that the interface is spatially inhomogeneous. Plots of the zero-bias barrier height as a function of 1/(2kT) points to a Gaussian distribution of barrier heights with 0.90 eV mean height and 0.014 eV standard deviation. When this distribution is accounted for, a Richardson of 6.5 A/(cm K)2 results, relatively close to the 9.4/(cm K)2 predicted by theory. We conclude that, combined with a Gaussian distribution of barrier heights, the thermionic-emission mechanism explains the temperature-dependent I–V and C–V characteristics of the studied Schottky-barrier diodes.  相似文献   

5.
6.
The reactive ion beam mixing (IBM) of V/Al interfaces by low-energy N2+ ions at room temperature leads to the formation of V–Al–N ternary nitride thin films. The kinetics, growth mechanisms, composition and electronic structure of those films have been studied using X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, Factor Analysis and Monte Carlo TRIDYN simulations. The comparison of experimental results with those obtained from TRIDYN simulations suggests that the chemical reaction with the nitrogen partial pressure and processes driven by residual defects are the rate-controlling mechanisms during the reactive IBM of V/Al interfaces. The kinetics of mixing is characterized by two stages. During the first stage (≤4×1016 ions/cm2), the formation of vanadium nitride is observed. In the second stage, vanadium nitride is transformed into a V–Al–N ternary nitride due to Al incorporation in the near surface region. Moreover, the V/Al ratio can be varied in a broad range, whereas the nitrogen concentration slightly decreases with increasing the aluminium content of the film.  相似文献   

7.
A theoretical model has been proposed for calculating the surface energy of nanowhiskers in the nearest neighbor approximation. The surface energy has been calculated for different faces of III–V semiconductor crystals with cubic and hexagonal structures. The effect of the formation of the hexagonal wurtzite phase in nanowhiskers of III–V semiconductor compounds has been considered using the obtained data. Estimates for the critical radius of the phase transition in III–V semiconductor nanowhiskers are presented.  相似文献   

8.
Yasser B. Saddeek 《哲学杂志》2013,93(26):2305-2320
Lead vanadate glasses of the system xMoO3–50V2O5–(50-x)PbO (0 ≤ x ≤ 25 mol. %) were synthesized and studied by FTIR and ultrasonic spectroscopy and differential scanning calorimetry to investigate the role of MoO3 content on their atomic structure. The elastic properties and Debye temperatures of the glasses were investigated using sound velocity measurements at 4 MHz. The activation energy for the glass transition was derived from the dependence of the glass-transition temperature (Tg ) on the heating rate. Similarly, the activation energy of the crystallization process was also determined. According to the IR analysis, the vibrations of the vanadate structural units are shifted towards higher wavenumbers on the formation of bridging oxygens. The change of density and molar volume with MoO3 content reveals that the molybdinate units are less dense than the lead oxide units. The observed compositional dependence of the elastic moduli is interpreted in terms of the effect of MoO3 on the coordination number of the vanadate units. A good correlation was observed between the experimentally determined elastic moduli and those computed according to the Makishima–Mackenzie model. It is assumed that MoO3 plays the role of a glass former by increasing the activation energy for the glass transition and the activation energy for crystallization and by increasing both the thermal stability and the glass formation range of the vanadate glasses.  相似文献   

9.
The reasons why the photoemission threshold energy of semiconductors is lower than the ionization energy of constituent atoms have been investigated. It has been indicated that the previously proposed interpretation of this phenomenon based on the inclusion of an additional intra-atomic Coulomb interaction between the valence electrons is insufficient. It has been shown that the calculation of the electronic energy structure of semiconductors, in particular, of the photoemission threshold, requires taking into account a change in the localization region of the valence electrons when a free atom is embedded into a crystal. A way of taking this change into account in the tight-binding theory has been demonstrated. Corrections to the tight-binding Hamiltonian have been found. The photoemission thresholds of III–V and II–VI semiconductors have been calculated with the inclusion of these corrections. Comparison of the results with the experimental data has been performed.  相似文献   

10.
For a wide class of technologically relevant compound III?CV and II?CVI semiconductor materials AC and BC mixed crystals (alloys) of the type A x B1?x C can be realized. As the electronic properties like the bulk band gap vary continuously with x, any band gap in between that of the pure AC and BC systems can be obtained by choosing the appropriate concentration x, granted that the respective ratio is miscible and thermodynamically stable. In most cases the band gap does not vary linearly with x, but a pronounced bowing behavior as a function of the concentration is observed. In this paper we show that the electronic properties of such A x B1?x C semiconductors and, in particular, the band gap bowing can well be described and understood starting from empirical tight-binding models for the pure AC and BC systems. The electronic properties of the A x B1?x C system can be described by choosing the tight-binding parameters of the AC or BC system with probabilities x and 1 ? x, respectively. We demonstrate this by exact diagonalization of finite but large supercells and by means of calculations within the established coherent potential approximation (CPA) We apply this treatment to the II?CVI system Cd x Zn1?x Se, to the III?CV system In x Ga1?x As and to the III-nitride system Ga x Al1?x N.  相似文献   

11.
Akio Suzuki 《高压研究》2018,38(2):145-152
A high pressure X-ray diffraction study of RhOOH was carried out up to 17.44?GPa to investigate the compression behavior of an oxyhydroxide with an InOOH-related structure. A fit to the third-order Birch–Murnaghan equation of state gave K0?=?208?±?6?GPa, and K′?=?9.4?±?1.3. The temperature derivative of the bulk modulus was found to be ?K/?T?=??0.06?±?0.02?GPa K?1. The refined parameters for volume thermal expansion were α0?=?2.7?±?0.3?×?10?5 K?1; α1?=?1.7?±?1.1?×?10?8 K?2 in the polynomial form (α(T)?=?α0?+?α1(T?300)). Our results show that RhOOH is very incompressible, and has a higher bulk modulus than other InOOH-structured oxyhydroxides (e.g. δ-AlOOH, ε-FeOOH, and γ-MnOOH).  相似文献   

12.
The structural stability and electrical resistivity of nanocrystalline Cr–N and V–N coatings prepared by ion beam-assisted deposition were studied. The results showed that under helium ion irradiation up to doses of 1.0.1017 ion/cm2 the fine-crystalline objects successively increase their resistance without apparent structural changes. The subsequent dose increase leads to gas-vacancy void formation and chromium nitride structure destruction. The presence of the initial closed porosity in vanadium nitride favors its structural stability at investigated maximum damage doses.  相似文献   

13.
Russian Physics Journal - A study of the features of structural-phase state, thermal stability, characteristics of mechanical properties and fracture behavior of V–Cr–Ta–Zr alloy...  相似文献   

14.
Ti–6Al–4V (Ti64) plates were subjected to rolling at 600°C and 800°C, respectively, for reductions up to 90% reduction in thickness. The mechanism of texture and microstructure evolution during rolling was studied in the present study. Extension twins of coherent nature were observed in the samples rolled up to 50% of reduction. The deformation was relatively inhomogeneous in the samples rolled at 600°C compared to that at 800°C. Visco-plastic self-consistent (VPSC) simulation showed that relative activity of pyramidal <c+a> slip was higher during rolling at 800°C compared to that at 600°C. The average activity of slip systems per grain was less than five for the samples rolled at 600°C and this might be responsible for the strain heterogeneity in the large grains. Further, twinning activity was found to be limited to a true strain of 0.5, as supported by the microstructural observation. VPSC simulation also showed the presence of contraction twins in the samples which was further supported by X-ray texture measurement. Dominant basal texture was observed in the samples irrespective of the temperature of rolling.  相似文献   

15.
The forward and reverse bias current–voltage (IV), capacitance/conductance–voltage (C/GV) characteristics of the fabricated Au/PVA (Bi-doped)/n-Si photodiode have been investigated both in dark and under 250 W illumination intensity at room temperature. The energy density distribution profile of Nss was extracted from the forward bias IV measurements by taking the voltage dependence of effective barrier height (Φe) and Rs for photodiode both in dark and under 250 W illumination cases. The exponential growth of the Nss from midgap toward the bottom of the conductance band is very apparent for two cases. The obtained high value of n and Rs were attributed to the particular distribution of Nss at metal/PVA interface, surface and fabrication processes, barrier inhomogeneity of interfacial polymer layer and the form of barrier height at M/S interface. While the values of C and G/w increase Rs and Rsh decrease under illumination, due to the illumination induced electron–hole pairs in depletion region. The voltage dependent Nss profile was also obtained from the dark and illumination capacitance at 1 MHz and these values of Nss are in good agreement. In addition, the fill factor (FF) under 250 W illumination level was found as 28.5% and this value of FF may be accepted sufficiently high. Thus, the fabricated Au/PVA (Bi-doped)/n-Si structures are more sensitive to light, proposing them as a good candidate as a photodiode or capacitance sensor for optoelectronic applications in modern electronic industry.  相似文献   

16.
《Physics letters. A》2002,300(1):93-96
The relationship between the transition voltage of the IV curve of the ferroelectrics and the coercive field of the PV hysteretic curve is calculated. The first mathematical analysis to explain the relation between the transition voltage Vt and the coercive voltage Vc is obtained. The origin of the interrelation between the transition voltage of the IV curve and the coercive field is that the height of the boundary barrier is inversely proportional to the effective dielectric constant of the near-boundary region, which is dependent on a derivative of polarization on the electric field, ∂P/∂E. The term ξ(eVt) plus the term (enb2δ/dNdPs)(eVc) equals a constant. Vt is the function of Eg, Ps, Vc, and E. There is a linear relation between Vc and Vt. This relationship will induce the matchable relations between the IV curve and the EP loop. As long as the Vc of the VP loop exists, the correspondent Vt of IV curve will certainly exist. It will be the foundation of a new ferroelectric memory, which operates by the IV characteristics. These relations are the conditions that can enable nonvolatile memory and nondestructive readout.  相似文献   

17.
Using the method of equal-channel angular pressing (ECAP), submicrocrystalline structure is formed in lowcarbon Fe–Mn–V–Ti–C steel with the average grain size 260 nm in the ferrite-perlite state and 310 nm in the martensitic state. It is established that the ECAP treatment gives rise to improved mechanical properties (Hμ = 2.9 GPa, σ0 = 990 MPa in the ferrite-perlite and Hμ = 3.7 GPa, σ0 = 1125 MPa in martensitic states), decreased plasticity, and results in plastic flow localization under tensile loading. The high strength properties formed by the ECAP are shown to sustain up to the annealing temperature 500°C.  相似文献   

18.
Ag/perylene-monoimide(PMI)/n-GaAs Schottky diode was fabricated and the current–voltage (IV) characteristics at a wide temperature range between 75 and 350 K and also the capacitance–voltage (CV) characteristics at room temperature for 1 MHz have been analyzed in detail. The measured IV characteristics exhibit a good rectification behavior at all temperature values. By using standard analysis methods, the ideality factor and the barrier height are deduced from the experimental data and also the variations of these parameters with the temperature are analyzed. In addition, by means of the Cheung and Cheung method, the series resistance and some other electrical properties are calculated for the diode. Finally, capacitance–voltage characteristics of device have been analyzed at the room temperature. From analyzing the capacitance measurements, Schottky barrier height is determined and then compared with the value which calculated from the IV measurements at room temperature. Also, the concentration of ionized donors, built-in potential and some other parameters of diode are found using CV characteristics.  相似文献   

19.
ZnO/Cu2O thin film n–i–p heterojunctions were fabricated by magnetron sputtering. The microstructure, optical, and electrical properties of n-type (n) ZnO, insulating (i) ZnO, and p-type (p) Cu2O films deposited on glass substrates were characterized by X-Ray diffraction (XRD), spectrophotometer, and the van der Pauw method, respectively. XRD results show that the mean grain size of i-ZnO film is much larger than that of n-ZnO film. The optical band gap energies of n-ZnO, i-ZnO, and p-Cu2O film are 3.27, 3.47, and 2.00 eV, respectively. The carrier concentration of n-ZnO film is two orders of magnitude larger than that of p-Cu2O film. The current–voltage (IV) characteristics of ZnO/Cu2O thin film n–i–p heterojunctions with different i-ZnO film thicknesses were investigated. Results show that ZnO/Cu2O n–i–p heterojunctions have well-defined rectifying behavior. All ideality factors of these n–i–p heterojunctions are larger than 2.0. The forward bias threshold voltage and ideality factor increase when i-ZnO layer thickness increases from 100 to 200 nm. An energy band diagram was proposed to analyze the IV characteristics of these n–i–p heterojunctions.  相似文献   

20.
The electrical and interface state properties of Au/perylene-monoimide (PMI)/n-Si Schottky barrier diode have been investigated by current–voltage (IV) and capacitance–voltage (CV) measurements at room temperature. A good rectifying behavior was seen from the IV characteristics. The series resistance (Rs) values were determined from IV and CV characteristics and were found to be 160 Ω and 53 Ω, respectively. The barrier height (Φb) of Au/PMI/n-Si Schottky diode was found to be 0.694 eV (IV) and 0.826 eV (CV). The ideality factor (n) was obtained to be 4.27 from the forward bias IV characteristics. The energy distribution of interface state density (Nss) of the PMI-based structure was determined, and the energy values of Nss were found in the range from Ec ? 0.508 eV to Ec ? 0.569 eV with the exponential growth from midgap toward the bottom of the conduction band. The values of the Nss without Rs are 2.11 × 1012 eV?1 cm?2 at Ec ? 0.508 eV and 2.00 × 1012 eV?1 cm?2 at Ec ? 0.569 eV. Based on the above results, it is clear that modification of the interfacial potential barrier for metal/n-Si structures has been achieved using a thin interlayer of the perylene-monomide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号