首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
利用光致发光(PL)分析快速热退火对Cu(In,Ga)Se2 (CIGS)电池的影响,研究退火对薄膜缺陷的影响。Cu(In,Ga)Se2电池的PL谱中总共有 7个峰,即2个可见波段峰和5个红外波段峰。退火温度较低,可减少薄膜体内缺陷,提高载流子浓度,改善薄膜质量;退火温度过高,则会引起正常格点处元素扩散,元素化学计量比改变,体内缺陷增加,吸收层带隙降低,反而会对CIGS薄膜造成破坏。  相似文献   

3.
We investigate a process used for the selenisation of particle‐based precursors to prepare low‐cost Cu(In,Ga)(S,Se)2 (CIGS) solar cells. It is suitable for high throughput with a short optimum selenisation duration of 3–5 min and employs a rapid thermal annealing system with elemental selenium vapour. Homogeneous crack‐free Cu(In,Ga)S2 precursor films of up to 1 µm are obtained via doctor blading. The high selenium vapour pressure in the selenisation reaction chamber results in the formation of a compact Cu(In,Ga)(S,Se)2 layer on top of a carbon‐rich underlayer. In order to investigate the phase development in the film, the selenisation process was interrupted at different stages and the samples were monitored via XRD and surface‐sensitive Raman measurements. We find the formation of a polycrystalline Cu(In,Ga)Se2 phase already after 1 s at the target temperature of 550 °C. Furthermore, the effect of initial precursor thickness on solar cell parameters is discussed. Complete solar cells are prepared by conventional methods, leading to conversion efficiencies well above 8%. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The benefits of gallium (Ga) grading on Cu(In,Ga)Se2 (CIGS) solar cell performance are demonstrated by comparing with ungraded CIGS cells. Using drive‐level capacitance profiling (DLCP) and admittance spectroscopy (AS) analyses, we show the influence of Ga grading on the spatial variation of deep defects, free‐carrier densities in the CIGS absorber, and their impact on the cell's open‐circuit voltage Voc. The parameter most constraining the cell's Voc is found to be the deep‐defect density close to the space charge region (SCR). In ungraded devices, high deep‐defect concentrations (4.2 × 1016cm–3) were observed near the SCR, offering a source for Shockley–Read–Hall recombination, reducing the cell's Voc. In graded devices, the deep‐defect densities near the SCR decreased by one order of magnitude (2.5 × 1015 cm–3) for back surface graded devices, and almost two orders of magnitude (8.6 × 1014 cm–3) for double surface graded devices, enhancing the cell's Voc. In compositionally graded devices, the free‐carrier density in the absorber's bulk decreased in tandem with the ratio of gallium to gallium plus indium ratio GGI = Ga/(Ga + In), increasing the activation energy, hindering the ionization of the defect states at room temperature and enhancing their role as recombination centers within the energy band. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

5.
The diffusion of indium and gallium in polycrystalline thin film Cu(In,Ga)Se2 layers has been investigated. Bilayer structures of CuInSe2 on top of CuGaSe2 and vice versa have been fabricated in both a Cu-rich and Cu-poor process (in relation to the ideal stoichiometry). In each process molybdenum coated soda-lime glass with and without a sodium barrier was used. These bilayers were analyzed with secondary ion mass spectrometry, X-ray diffraction, scanning electron microscope and transmission electron microscope equipped with energy dispersive X-ray spectroscopy. It was found that the grain boundary diffusion was not significantly higher than the diffusion inside the grains, also for Cu-rich layers. The diffusion is suggested to mainly proceed via vacant metal sites in the lattice structure. In sodium free films a higher diffusion into the bottom layers, compared to films with sodium, was seen in all cases. This observation was explained with a larger number of vacancies, that facilitates indium and gallium diffusion, in the sodium free films. The difference in diffusion between indium in CGS layers and gallium in CIS layers, in both Cu-rich and Cu-poor processes, was small for layers with sodium.  相似文献   

6.
One dimension solar cells simulator package (SCAPS) is used to study the possibility of carrying out thin CIGS solar cells with high and stable efficiency. In the first step, we modified the conventional ZnO:B/i-ZnO/CdS/SDL/CIGS/Mo structure by substituting the SDL layer with the P?+?layer, having a wide bandgap from 1 to l.12?eV. Then, we simulated the J-V characteristics of this new structure and showed how the electrical parameters are affected. Conversion efficiency of 18.46% is founded by using 1.1?μm of P?+?layer thickness. Secondly, we analyze the effect of increase thickness and doping density of CIGS, CdS and P?+?layers on the electric parameters of this new structure. We show that only the short-circuit current density (JSC) and efficiency are improved, reaching respectively 34.68?mA/cm2 and 18.85%, with increasing of the acceptors density. Finally, we introduced 10?nm of various electron reflectors at the CIGS/Mo interface in the new structure to reduce the recombination of minority carriers at the back contact. High conversion efficiency of 23.34% and better stability are obtained when wide band-gap BSF is used.  相似文献   

7.
In this paper, we investigated the effect of rapid thermal annealing (RTA) on solar cell performance. An opto-electric conversion efficiency of 11.75% (Voc=0.64 V, Jsc = 25.88mA/cm2 , FF=72.08%) was obtained under AM 1.5G when the cell was annealed at 300℃ for 30s. The annealed solar cell showed an average absolute efficiency 1.5% higher than that of the as-deposited one. For the microstructure analysis and the physical phase confirmation, X-ray diffraction (XRD), Raman spectra, front surface reflection (FSR), internal quantum efficiency (IQE), and X-ray photoelectron spectroscopy (XPS) were respectively applied to distinguish the causes inducing the efficiency variation. All experimental results implied that the RTA eliminated recombination centers at the p-n junction, reduced the surface optical losses, enhanced the blue response of the CdS buffer layer, and improved the ohmic contact between Mo and Cu(In, Ga)Se2 (CIGS) layers. This leaded to the improved performance of CIGS solar cell.  相似文献   

8.
One dimension solar Cell Simulation package (SCAPS) is used to analyze the impact of the CdS-CIGS interface configuration on the performances of CIGS solar cells. We simulated the current-voltage characteristic of two models of the cell: one with a donor type defect (OVC model) and the other with acceptor type defect (P+ model) at the CdS-CIGS interface. The advantages and disadvantages of these CIGS surface configuration on the electrical parameters were discussed according to their thicknesses, defect density and carrier lifetime. The simulation results show that the model with the P+ layer has poor performance when its thickness and defect density increase, due to a huge distortion on the J-V characteristic. On the other hand, the OVC layer plays a fundamental role in the performance of CIGS solar cells. Better performances are obtained with the OVC model when the density of donor defect is in the range 1013 - 1015 cm−3, the charge carriers lifetime in the range 0.02 - 1 ns, and the thickness of the OVC layer in the range 200 - 400 nm.  相似文献   

9.
10.
CdS buffer layer of varying thickness ranging from 23 to 58 nm deposited at different substrate temperature were prepared as n-type junction partner for thermally grown Cu(In,Ga)Se2 and two-step chalcogenized Cu(In,Ga)(S,Se)2 photovoltaic absorber films and the effect of deposition temperature and time on the CdS growth behavior and solar cell performance were evaluated. High deposition temperature resulted in a thicker CdS layer and more importantly lower density and shallower depth of open voids, which attributed to the improved open-circuit voltage and fill factor due to reduced interface recombination. The solar cell efficiency of thermally grown absorber saturated at about 30 nm thickness of CdS, while that of chalcogenized absorber gradually increased with CdS thickness up to 60 nm without significant loss of short-circuit current density.  相似文献   

11.
We report the effect of Cr impurity barrier on Cu(In,Ga)Se2 (CIGS) thin-film solar cells prepared on flexible substrates. The Cr films with varying the thickness (tCr) were deposited on stainless steel substrates using direct-current magnetron sputtering. The solar cell performance was improved by increasing tCr since the diffusion of Fe impurities from the substrate to CIGS was suppressed. Although the elemental composition, grain size, and strain of CIGS film showed little change with varying Fe content, the fill factor and the short-circuit current density increased as decreasing Fe. The Fe increased the series resistance, shunt paths, and saturation current density. The reduction of Fe caused a steeper bandgap grading in CIGS which enhances current collection due to higher electric fields in bulk CIGS. CIGS solar cells with 1000 nm-thick Cr barrier showed the best conversion efficiency of 9.05%.  相似文献   

12.
We report on the interaction between intentional potassium doping of thin film Cu(In,Ga)Se2 (CIGS) solar cells, CIGS absorber composition, and device efficiency. Up to now high efficiency CIGS solar cells could not be produced with a gallium/(gallium + indium) ratio higher than 35%. The new doping process step does not only increase solar cell conversion efficiencies up to 20.8%, but also allows a shift in the CIGS absorber composition towards higher gallium content whilst maintaining this high efficiencies level. We find that the saturation of the open circuit voltages for higher gallium content that is normally observed can partially be overcome by the new doping procedure. This observation leads us to the conclusion that even on this high performance level CIGS solar cells still hold a potential for further development beyond the record values reported here. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We made Cu(In,Ga)Se2 (CIGS) films by using sputtering and post-selenization. First, we deposited stacked metallic films by using the sputtering method and then carried out post-selenization for the precursor stacked metals with different amounts of Se powder, 0.160 g, 0.321 g, 0.642 g, and 0.964 g. We found that with a small amount of Se, separated CuInSe2 and CuGaSe2 layers were formed, which was confirmed by X-ray diffraction (XRD), Raman spectroscopy, and energy-dispersive X-ray analysis. For larger Se amounts, the CIGS phase was observed in the results of XRD and Raman spectroscopy. These results indicate that the amount or the partial pressure of Se plays an important role in the reaction kinetics for stacked precursor metals to form the CIGS phase.  相似文献   

14.
We report on the use and effect of the alkali elements rubidium and caesium in the place of sodium and potassium in the alkali post deposition treatment (PDT) as applied to Cu(In,Ga)Se2 (CIGS) solar cell absorbers. In order to study the effects of the different alkali elements, we have produced a large number of CIGS solar cells with high efficiencies resulting in a good experimental resolution to detect even small differences in performance. We examine the electrical device parameters of these fully functional devices and observe a positive trend in the IV parameters when moving from devices without PDT to KF‐, RbF‐, and eventually to CsF‐PDT. A diode analysis reveals an improved diode quality for cells treat‐ed with heavier alkalis. Furthermore, secondary ion mass spectrometry (SIMS) measurements reveal a competitive mechanism induced within the class of alkali elements in the CIGS absorber induced by the alkali post deposition treatment. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

15.
在550℃下的H2S气氛中退火处理电沉积制备的Cu(In,Ga)Se2(CIGS)预置层,制备了太阳电池光吸收层Cu(In,Ga)(Se,S)2(CIGSS)薄膜.采用X射线能量色散谱、俄歇电子能谱、扫描电镜、X射线衍射和拉曼光谱对退火前后的薄膜进行表征.结果表明,H2S气氛下退火能够实现薄膜中O的去除和S的掺入,同时使得各元素的纵向分布更加均匀并可消除Cu-Se微相.此外,H2S退火还可改善薄膜的结晶性能,并使S和Ga进入黄铜矿结构,薄膜晶格参数变小.  相似文献   

16.
17.
We investigate the degradation of ZnO/CdS/ Cu(In,Ga)Se2 heterojunction solar cells for space applications and the defect generation in polycrystalline Cu(In,Ga)Se2 thin films by irradiation with 1-MeV electrons with fluences Je up to Je=5᎒18 cm-2. Notable degradation of the solar cell performance starts at fluences of Je=1017 cm-2 where the open circuit voltage decreases by about 5% while short circuit current and fill factor remain essentially unaffected. Thus, Cu(In,Ga)Se2 solar cells withstand electron fluences which are higher by one order of magnitude or more when compared to other technologies. A model describes the absolute open circuit voltage loss considering the increase of space charge recombination by electron irradiation-induced defects. Defect analysis by admittance spectroscopy shows that acceptor defects with an energy distance of approximately 300 meV from the valence band are generated at a rate %=0.017 (ǂ.01) cm-1.  相似文献   

18.
Epitaxial layers of the quaternary compound Cu(In,Ga)S2 and the ternary compound CuInS2 were grown on Si(111) substrates via Molecular Beam Epitaxy. The layers were investigated for their morphological and structural properties using Rutherford backscattering spectroscopy, atomic force microscopy, reflection high-energy electron diffraction and X-Ray diffraction. Furthermore, complete solar cell devices were processed from these layers and their photovoltaic properties were investigated by means of I(U)-curves under illumination. Thus, efficiencies up to η=3.2% were achieved. The comparatively low performance of the solar cell devices is attributed to certain heterogeneities of the samples as a result of the growth process.  相似文献   

19.
The quaternary system Cu(In,Ga)Se2 (CIGS) allows the band gap of the semiconductor to be adjusted over a range of 1.04-1.67 eV. Using a non-uniform Ga/In ratio throughout the film thickness, additional fields can be built into p-type CIGS-based solar cells, and some researchers have asserted that these fields can enhance performance. The experimental evidence that grading improves device performance, however, has not been compelling, mostly because the addition of Ga itself improves device performance and hence a consistent separation of the grading benefit has not always been achieved. Numerical modeling tools are used in this contribution to show that (1) there can be a beneficial effect of grading, (2) in standard thickness CIGS cells the benefit is smaller than commonly believed, (3) there is also the strong possibility of reduced rather than of increased device performance, and (4) thin-absorber cells derive more substantial benefit.  相似文献   

20.
《Current Applied Physics》2018,18(4):405-410
Cu(In,Ga)Se2 (CIGS) solar cells were fabricated by varying the film thickness of the cracker-ZnS (c-ZnS) buffer layer from 0 nm to 20 nm, and performance was found to depend on c-ZnS film thickness. The best cell efficiency of approximately 8% was obtained from the CIGS solar cell with an 8 nm thick-c-ZnS buffer layer. To investigate the primary factor to determine the cell performance, we utilized the impedance spectroscopy (IS) reflecting interface qualities, and capacitance-voltage (CV) profiling sensitive to bulk properties. In IS results, an equivalent circuit model including the resistance and capacitance was proposed to interpret cell performance, and carrier lifetime was obtained in connection with recombination probability at p-n junction. In CV profiling, the carrier concentration in the CIGS bulk, the depletion width, and the charge distribution related to the defect states along the depth direction were evaluated. The formation mechanism of c-ZnS buffer layer is suggested by measuring the chemical states, which is closely associated with the IS and CV results. The depletion width substantially increased at c-ZnS film thickness more than 15 nm due to the diffusion of Zn atoms toward CIGS layer, resulting in negative influence on cell performance. From this study, we demonstrated that IS and CV profiling are complementary analysis tools for interpretation of the solar cell operation concerning the interface and bulk properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号