首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of the recent experiments focused on study of x-ray radiation from multicharged plasmas irradiated by relativistic (I > 1019 W/cm2) sub-ps laser pulses on Leopard laser facility at NTF/UNR are presented. These shots were done under different experimental conditions related to laser pulse and contrast. In particular, the duration of the laser pulse was 350 fs or 0.8 ns and the contrast was varied from high (10?7) to moderate (10?5). The thin laser targets (from 4 to 750 μm) made of a broad range of materials (from Teflon to iron and molybden to tungsten and gold) were utilized. Using the x-ray diagnostics including the high-precision spectrometer with resolution R ~ 3000 and a survey spectrometer, we have observed unique spectral features that are illustrated in this paper. Specifically, the observed L-shell spectra for Fe targets subject to high intensity lasers (~1019 W/cm2) indicate electron beams, while at lower intensities (~1016 W/cm2) or for Cu targets there is much less evidence for an electron beam. In addition, K-shell Mg features with dielectronic satellites from high-Rydberg states, and the new K-shell F features with dielectronic satellites including exotic transitions from hollow ions are highlighted.  相似文献   

2.
Laser experiments of the plasma jet formation using nanosecond laser pulses with low energy, i.e., <20 J, are presented. Planar and cratered gadolinium and aluminum targets are irradiated with laser intensities of several 1014 W/cm2. Spatially-resolved time-integrated X-ray spectra were recorded in the spectral range from 7 to 10 Å. A jet-like structure is obtained from aluminum targets with a preformed crater, which is not seen in planar target irradiation. For gadolinium, a jet is observed from both planar and preformed cratered targets, suggesting that the collimation is dominated by radiative cooling. A radiation-hydrodynamics code coupled to a non-LTE ionization code was used to model the plasma. The calculated plasma emission was found to be consistent with the experimental results.  相似文献   

3.
Pulse intensities greater than 1017 Watt/cm2 were reached at the FLASH soft X-ray laser in Hamburg, Germany, using an off-axis parabolic mirror to focus 15 fs pulses of 5–70 μJ energy at 13.5 nm wavelength to a micron-sized spot. We describe the interaction of such pulses with niobium and vanadium targets and their deuterides. The beam produced craters in the solid targets, and we measured the kinetic energy of ions ejected from these craters. Ions with several keV kinetic energy were observed from craters approaching 5 μm in depth when the sample was at best focus. We also observed the onset of saturation in both ion acceleration and ablation with pulse intensities exceeding 1016 W/cm2, when the highest detected ion energies and the crater depths tend to saturate with increasing intensity.A general difficulty in working with micron and sub-micron focusing optics is finding the exact focus of the beam inside a vacuum chamber. Here we propose a direct method to measure the focal position to a resolution better than the Rayleigh length. The method is based on the correlation between the energies of ejected ions and the physical dimensions of the craters. We find that the focus position can be quickly determined from the ion time-of-flight (TOF) data as the target is scanned through the expected focal region. The method does not require external access to the sample or venting the vacuum chamber. Profile fitting employed to analyze the TOF data can extend resolution beyond the actual scanning step size.  相似文献   

4.
K-shell X-ray emission from laser-irradiated planar Zn, Ge, Br, and Zr foils was measured at the National Ignition Facility for laser irradiances in the range of 0.6–9.5 × 1015 W/cm2. The incident laser power had a pre-pulse to enhance the laser-to-X-ray conversion efficiency (CE) of a 2–5 ns constant-intensity pulse used as the main laser drive. The measured CE into the 8–16 keV energy band ranged from 0.43% to 2%, while the measured CE into the He-like resonance 1s2–1s2p(1P) and intercombination 1s2–1s2p(3P) transitions, as well as from their 1s2(2s,2p)l–1s2p(2s,2p)l satellite transitions for l = 1, 2, 3, corresponding to the Li-, Be-, and B-like resonances, respectively, ranged from 0.3% to 1.5%. Absolute and relative CE measurements are consistent with X-ray energy scaling of ()?3 to ()?5, where is the X-ray energy. The temporal evolution of the broadband X-ray power was similar to the main laser drive for ablation plasmas having a critical density surface.  相似文献   

5.
Shock waves generated by temporally shaped laser ablation compressed and heated Al to ρ = 11 ± 5 g/cm3 and 20 ± 2 eV. The inferred density and temperature demonstrate that highly compressed, Fermi-degenerate plasma can be created by tuning the temporal pulse shape of the laser drive intensity. The density and temperature of these plastic-tamped Al plasmas in the warm dense matter regime were diagnosed using the Stark-broadened, Al 1s–2p absorption spectral line shapes. These observations represent the forefront of opacity measurements for warm dense matter and are important for high energy density physics and inertial confinement fusion.  相似文献   

6.
The studies emphasize investigation of plasma formation, implosion, and radiation features as a function of two load configurations: compact multi-planar and cylindrical wire arrays. Experiments with different Z-pinch loads were performed on 1.6 MA, 100 ns, Zebra generator at University of Nevada, Reno. The multi-planar wire arrays (PWAs) were studied in open and closed configurations with Al, Cu, brass, Mo and W wires. In the open magnetic configurations (single, double, triple PWAs) magnetic fields are present inside the arrays from the beginning of discharge, while in closed configurations (prism-like PWA) the global magnetic field is excluded inside before plasma flow occurs. The new prism-like PWA allows high flexibility in control of implosion dynamics and precursor formation. The spectral modeling, magneto-hydrodynamic (MHD) and wire ablation dynamic model (WADM) codes were used to describe the plasma evolution and plasma parameters. Experimentally observed electron temperature and density in multiple bright spots reached 1.4 keV and 5 × 1021 cm?3, respectively. Two types of bright spots were observed. With peak currents up to 1.3 MA opacity effects became more pronounced and led to a limiting of the X-ray yields from compact cylindrical arrays. Despite different magnetic energy to plasma coupling mechanisms early in the implosion a comparison of compact double PWA and cylindrical WA results indicates that during the stagnation stage the same plasma heating mechanism may occur. The double PWA was found to be the best radiator tested at University scale 1 MA generator. It is characterized by a combination of larger yield and power, mm-scale size, and provides the possibility of radiation pulse shaping. Further, the newer configuration, the double PWA with skewed wires, was tested and showed the possibility of a more effective X-ray generation.  相似文献   

7.
A study is made of the gasdynamical and optical properties of erosional laser plasma jets in the presence and absence of laser radiation. It is shown that in processes of plasma formation during the action of laser radiation of moderate intensity (q 107 W/cm2) on absorbing materials, the heating of the disintegration products by the attacking laser radiation plays an important role. The temperature distribution is obtained along the plasma jet which forms during the laser attack counter to its propagation in a quartz tube confining the dispersion. The temperature maximum is found at the exit from the tube, is caused by the heating of the erosional laser plasma by the incident laser radiation in the process of its one-dimensional gasdynamical motion, and indicates the screening of the surface from the laser radiation. It is established that the screening is affected by the gasdynamical structure of the plasma jet and by the spacing of the plasma clusters corresponding to the regular pulses of laser radiation.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 13–18, January–February, 1974.The authors are grateful to M. A. El'yashevich for his interest in the work.  相似文献   

8.
We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 μm and mass of a few 10?8 g were irradiated with up to 7 J of laser energy focused to intensities of several 1019 W/cm2. The conversion of laser energy to K-alpha radiation is measured, and high-resolution spectra that allow observation of line shifts are observed, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.  相似文献   

9.
We present measurements of the changes in the microscopic structure of graphite in a laser-driven shock experiment with X-ray scattering. Laser radiation with intensities of ∼2 × 1013 W/cm2 compressed the carbon samples by a factor of two reaching pressures of ∼90 GPa. Due to the change of the crystalline structure the scattered signals of the probe radiation were modified significantly in intensity and spectral composition compared to the scattering on cold samples. It is shown that the elastic scattering on tightly bound electrons increases strongly due to the phase transition whereas the inelastic scattering on weakly bound electrons remains nearly unchanged for the chosen geometry.  相似文献   

10.
The requirement for sources of hard X-rays suitable for high resolution radiography through large ρR targets is prominent in many aspects of current laser-driven plasma physics research. In recent work using the OMEGA EP laser facility [L. J. Waxer, M. J. Guardalben, J. H. Kelly et al., CLEO/QELS, Optical Society of America, San Jose, CA, IEEE (2008)] at the Laboratory for Laser Energetics (LLE) in Rochester, NY, experiments have been performed to measure characteristics of 22–52 keV X-ray sources using high intensity short-pulse lasers. High quality point projection, two-dimensional radiography was demonstrated by irradiating microwire targets with laser intensities of 1016 W cm?2–1019 W cm?2. Microwire targets were manufactured to dimensions of 10 μm × 10 μm × 300 μm and were supported by a 100 μm × 300 μm × 6 μm low-Z substrate. Measurements of the kα conversion efficiency and X-ray source-size are discussed and, of particular importance for radiography, the spectral purity of the backlighter is characterized to assess the relative importance of the Kα emission to bremsstrahlung background.  相似文献   

11.
This work describes measurements of laser propagation through very low-density aerogels and subsequent multi-keV photon production from titanium foils. For efficient foil heating, SiO2 aerogel with densities of 2 and 5 mg/cm3 have been cast into a plastic cylinder, which are then mounted to Ti foils that are 3–20 μm thick. Experiments have been performed on the GEKKO-XII laser facility to characterize laser propagation through the aerogel and X-ray production from the Ti foil. Multi-keV emission is diagnosed with a full set of diagnostics giving laser-to-X-ray conversion efficiencies, time-dependent X-ray power and two-dimensional X-ray imaging.  相似文献   

12.
X-ray Thomson scattering from spherically imploding, direct-drive capsules is used to study the in-flight density, temperature, and ionization state at electron densities of up to ∼1024 cm−3. We present scattering data from Be cone-in-shell targets with ∼2 × 106 photons in the scattered spectrum. These measurements display the ability for single-shot characterization of the shell conditions in capsule implosions. This is important for diagnosing inertial confinement fusion experiments that determine the likelihood of ignition at the National Ignition Facility (NIF), LLNL. We will discuss the experimental geometry, or platform, and the outlook for further improvement of the signal-to-noise.  相似文献   

13.
Spectra of the W L transitions in the energy range 8–12 keV from warm dense plasmas generated by the Naval Research Laboratory's Gamble II pulsed power machine were recorded by a newly developed high-resolution transmission-crystal X-ray spectrometer with ±2 eV accuracy. The discharges have up to 2 MV voltage, 0.5 MA current, and produce up to 2.4 MJ/cm?3 energy density. The plasma-filled rod pinch (PFRP) diode produces a plasma with Ne ≈ 1022 cm?3 and Te ≈ 50 eV during the time of maximum X-ray emission. By analyzing the line shapes, it was determined that the Lβ2 inner-shell transition from the 4d5/2 level was shifted to higher energy by up to 23 eV relative to nearby Lβ transitions from n = 3 levels. In addition, the Lβ2 transition was significantly broader and asymmetric compared to the n = 3 transitions. The energy shift of the Lβ2 transition results from the ionization of electrons outside the 4d shell that perturbs the transition energies in the ions to higher values. The increased line width and asymmetry result from unresolved transitions from a range of ionization states up to +28. The ionization distribution was determined by comparison of the measured energy shifts and widths to calculated transition energies in W ions, and the ionization was correlated with Gamble discharge parameters such as the anode type and the high voltage delay time. This work demonstrates a new hard X-ray spectroscopic diagnostic technique for the direct measurement of the ionization distribution in warm dense plasmas of the heavy elements W through U that is independent of the other plasma parameters and does not require interpretation by hydrodynamic, atomic kinetics, and radiative simulation codes.  相似文献   

14.
Implosion and heating experiments at the Institute of Laser Engineering, Osaka University on Fast Ignition (FI) targets for the FIREX-1 project have been performed with Gekko-XII laser for implosions and LFEX laser for heating. We tried to reduce the prepulse level in the LFEX laser system and have improved the plasma diagnostics to observe the plasma in the harsh hard X-ray environment. A plastic (CD) shell target, 7-μm thick and 500 μm in diameter with a hollow gold cone was used in this experiment to guide the short-pulse laser at the time of the maximum compression. The shell target was imploded with 9 or 12 beams of Gekko-XII laser (527 nm) with energy of 300 J/beam in a 1.5 ns pulse. Two of the four LFEX laser (1053 nm) beams were injected into the inside bottom of the cone with an energy up to 0.7 kJ/beam in a 1.5 ps pulse at the time around the maximum implosion. We have observed neutron enhancement up to 3.5 × 107 with total heating energy of 300 J, which is higher than the yield obtained in the previous experiment in 2002 [R. Kodama et al. Nature 418, 933 (2002)]. We found the estimated heating efficiency is at a level of 10–20%. Fuel heating to 5 keV is expected when the full output of LFEX is used.  相似文献   

15.
A novel concept for using hybrid targets to create multi-keV X-ray sources was tested on the GEKKO XII facility of the OSAKA University and on the OMEGA facility of the University of Rochester. The sources were made via laser irradiation of a titanium foil placed at the end of a plastic cylinder, filled with a very low-density (2 and 5 mg/cm3) silicon-dioxide aerogel that was designed to control the longitudinal expansion of the titanium plasma. Preliminary calculations were used to determine optimal conditions for the aerogel density, cylinder diameter and length that maximize multi-keV X-ray emission. The X-ray emission power was measured on OMEGA using absolutely calibrated broad-band, diode-based CEA diagnostics, in addition to high resolution crystal spectrometers. On GEKKO XII, the heat wave propagation velocity in the aerogel was also measured with an X-ray framing camera. The advantage of using the thermal wave generated in the aerogel to heat a solid material to increase the conversion efficiency has not been fully demonstrated in these experiments. However, it was shown that a 5 mg/cm3 aerogel placed in front of a titanium foil can improve the x-ray conversion efficiency with respect to the case of 2 mg/cm3 for some target diameter and length.  相似文献   

16.
Experiments have been performed in which fs-timescale laser pulses, focused to an intensity ~1016 W cm?2, are able to directly create and interact with solid density plasma (1). We have performed one-dimensional simulations of the experiments with a kinetic model which solves Maxwell's equations coupled to the Fokker–Planck equation enabling us to self-consistently model the non-local heat flow and absorption process. We find that the heat-flux is magnetized by the laser field and is inhibited relative to the Spitzer value.  相似文献   

17.
Results on diagnoses of laser-driven, shock-heated foam plasma with time-resolved Al 1s-2p absorption spectroscopy are reported. Experiments were carried out to produce a platform for the study of relativistic electron transport. In cone-guided Fast Ignition (FI), relativistic electrons generated by a high-intensity, short-pulse igniter beam must be transported through a cone tip to an imploded core. Transport of the energetic electrons could be significantly affected by the temperature-dependent resistivity of background plasmas. The experiment was conducted using four UV beams of the OMEGA EP laser at the Laboratory For Laser Energetics. One UV beam (1.2 kJ, 3.5 ns square) was used to launch a shock wave into a foam package target, consisting of 200 mg/cm3 CH foam with aluminum dopant and a solid plastic container surrounding the foam layer. The other three UV beams with the total energy of 3.2 kJ in 2.5 ns pulse duration were tightly focused onto a Sm dot target to produce a point X-ray source in the energy range of 1.4–1.6 keV. The quasi-continuous X ray signal was transmitted through the shock-heated Al-doped, foam layer and recorded with an X-ray streak camera. The measured 1s-2p Al absorption features were analyzed using an atomic physics code FLYCHK. Electron temperature of 40 eV inferred from the spectral analysis is consistent with 2-D DRACO Radiation-hydrodynamic simulations.  相似文献   

18.
Quantum interference, similar to Young double-slit interference, takes place between the photoionization processes of two same kind atoms when the nuclei separation is less than or comparable to the de Broglie wavelength of the ionized electrons. In dense plasma, the average nearest-neighbor atom distance maybe comparable to or even less than the wavelength of the outgoing electrons, the photoionization cross section of the atoms as well as the opacity of the plasma will be affected by this kind of interferences among atoms. In the present work, we first attain the nearest-neighbor distributions of the atoms in hot dense plasmas by performing an average-atom molecular dynamics (AAMD) simulation. Then, the effective total photoionization cross section is obtained by integrating the two atom interference effects over the nearest-neighbor distributions. At last, the bound-free and Rosseland mean opacities of Au plasmas at 100 eV and different densities show that the interference effects are considerable when the density is larger than 1 g/cm3.  相似文献   

19.
The last several years have witnessed a surge of activity involving the interaction of clusters with intense ultrashort pulse lasers. The interest in laser–cluster interaction has not been only of academic interest, but also because of the wide variety of potential applications. Clusters can be used as a compact source of X-rays, incoherent as well as coherent, and of fast ions capable of driving a fusion reaction in deuterium plasmas. In one set of xenon cluster experiments, in particular, amplification of ~2.8 Å X-rays has been observed [28]. X-ray amplification in cluster media is a phenomenon of critical importance and may lead to applications such as EUV lithography, EUV and X-ray microscopy, X-ray tomography, and variety of applications in biology and material sciences. However, while amplification of ~2.8 Å X-rays has been documented in experiments, the mechanism for producing it remains to be fully understood. In this talk, a xenon model of laser–cluster interaction dynamics is presented to shed light on the processes responsible for amplification. The focus of this research is on the feasibility of creating population inversions and gain in some of the inner-shell hole state transitions within the M-shell of highly ionized xenon. The model couples a molecular dynamics (MD) treatment of the explosively-driven, non-Maxwellian cluster expansion to a comprehensive multiphoton-radiative ionization dynamic (ID) model including single- and double-hole state production within the Co- and Fe-like ionization stages of xenon. The hole-state dynamics is self-consistently coupled to a detailed valence-state collisional-radiative dynamics of the Ni-, Co-, and Fe-like ionization stages of xenon. In addition, the model includes tunneling ionization rates that confirm an initial condition assumption that Ni-like ground states can be created almost instantaneously, on the order of a femtosecond or less, i.e., at laser intensities larger than 1019 W/cm2, all of the N-shell, n = 4 electrons are striped from a xenon atom in less than a femtosecond. Because of the abundance of these ground states, large numbers of n = 2, inner-shell hole states and large population inversions can be created when the Ni-like ground states are photo- or collisionally ionized. Once the M-shell is entered, tunneling ionization slows down as does collisional ionization due to the fall in ion density as the cluster expands. Moreover, as the cluster density goes down, our combined MD and ID calculations show that so do the calculated population inversions. Thus, our calculations do not support the initial experimental data interpretations in which the measured gains have been associated with double holes in more highly ionized stages of xenon (Xe32+, Xe34+, Xe35+, and Xe37+), which our calculations suggest would require laser intensities in excess of 1.5 × 1020 W/cm2, for a 248 nm, ~250 fs laser pulse focused in a gas of xenon clusters. At laser intensities used in the experiment, such ionization stages would be reached, but only later in time when cluster densities have fallen by several orders of magnitude from their initial values to values where pumping rates are too low and gains cannot be generated.  相似文献   

20.
Absolute Kα line spectroscopy is proposed for studying laser–plasma interactions taking place in the Au cone-guided fast ignition targets. X-ray spectra ranging from 20 to 100 keV were quantitatively measured with a Laue spectrometer composed of a cylindrically curved crystal and a filter-absorption method for Bremsstrahlung continuum emission. The absolute sensitivities of the Laue spectrometer systems were calibrated using pre-characterized laser-produced X-ray sources and radioisotopes. The integrated reflectivity for the crystal is in good agreement with predictions by an X-ray diffraction code. The energy transfer efficiency from incident laser beams to hot electrons, as the energy transfer mechanism, is derived from this work. The absolute yield of Au and Ta Kα lines were measured in the fast ignition experimental campaign performed at Institute of Laser Engineering, Osaka University. Applying the hot electron spectrum information from electron spectrometer and scaling laws, the energy transfer efficiency from the incident LFEX, a kJ-class PW laser, to hot electrons was derived for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号