首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We explore the optical characteristics and fundamental limitations of one-dimensional (1D) photonic crystal (PhC) structures as means for improving the efficiency and power density of thermophotovoltaic (TPV) and microthermophotovoltaic (MTPV) devices. We analyze the optical performance of 1D PhCs with respect to photovoltaic diode efficiency and power density. Furthermore, we present an optimized dielectric stack design that exhibits a significantly wider stop band and yields better TPV system efficiency than a simple quarter-wave stack. The analysis is done for both TPV and MTPV devices by use of a unified modeling framework.  相似文献   

2.
This paper presents a process to easily fabricate photonic crystals (PCs) on silicon to increase the efficiency of solar cells by reducing the sunlight reflection in the front surface of the cell. The process, based on laser interference lithography (LIL) and reactive ion etching (RIE), allows creating nanostructures over large areas with different shapes and dimensions. The reflectance of the resulting surface depends on the height, pitch, width and shape of the created PC. In this work, these parameters have been optimized by computer simulation and the best PC so far found has been fabricated on silicon. We obtain a normal reflectance under 10% in the spectral region between 500 and 900 nm without any other material employed as antireflecting coating.  相似文献   

3.
4.
By probing the resonances between a photonic band and an external laser field and their nonlinear changes in angle-resolved reflectivity, we show experimental evidence that the nonlinear optical changes in a two-dimensional photonic crystal waveguide with a Kerr nonlinearity are critically dependent on the dispersion nature and the group velocity of the photonic bands. The results agree well with the behavior predicted from band structures, indicating that the design of nonlinear optical properties of material systems is realistically possible by band dispersion and group velocity engineering.  相似文献   

5.
De Dood  M.J.A.  Snoeks  E.  Moroz  A.  Polman  A. 《Optical and Quantum Electronics》2002,34(1-3):145-159
The existence and properties of photonic band gaps was investigated for a square lattice of dielectric cylinders in air. Band structure calculations were performed using the transfer matrix method as function of the dielectric constant of the cylinders and the cylinder radius-to-pitch ratio r/a. It was found that band gaps exist only for transverse magnetic polarization for a dielectric contrast larger then 3.8 (index contrast >1.95). The optimum r/a ratio is 0.25 for the smallest index contrast. For silicon cylinders (n = 3.45) the widest gap is observed for r/a = 0.18. Band structure calculations as function of r/a show that up to four gaps open for the silicon structure. The effective index was obtained from the band structure calculations and compared with Maxwell–Garnett effective medium theory. Using the band structure calculations we obtained design parameters for silicon based photonic crystal waveguides. The possibility and limitations of amorphous silicon, silicon germanium and silicon-on-insulator structures to achieve index guiding in the third dimension is discussed.  相似文献   

6.
To make a device from an opal—or otherwise—the photonic bands and the optical properties derived from them are needed. Knowing the effects of different parameters defining the opal geometry and different possible modifications of its structure are needed, too. An accurate definition of the device will be required to obtain a good performance. With this aim, the optics of light with a wavevector in the vicinity of the L point in the Brillouin zone and its coupling to bare opals band structure are presented. An important aspect is the transition from finite to infinite crystal and the study of size effects on the bands. It is possible to substantially alter the photonic band structure of an opal-based system, while maintaining the lattice structure, simply by growing layers of other materials with an appropriate refractive index. Here, it is shown how, by the growth of accurately controlled thin layers of silicon and germanium, and further processing, one can induce the opening of two complete photonic band gaps (PBGs) in an opal structure. Finally, the possibility to fabricate a simple device consisting in a planar waveguide will be shown. By means of a very simple and inexpensive procedure, engineered planar defects acting as microcavities have been realized. These can be viewed as a particular case of a much more general class of heterostructures that can be grown by combining opal vertical deposition and chemical vapour deposition of oxides. A further step is made by applying electron beam lithography to provide lateral definition and facilitate three-dimensional structuring.  相似文献   

7.
In this paper we analyze theoretically how the introduction of the third component into the two-dimensional photonic crystal influences the photonic band structure and the density-of-states of the system. We consider the periodic array of cylindrical air rods in a dielectric, and the third medium is introduced as a ring-shaped intermediate layer of thickness d and dielectric constant i between the air pores and the dielectric background. Using the plane wave method, we have obtained the band structures for the 2D triangular lattice photonic crystals. The dependencies of TE and TM band gaps’ widths and gaps’ edges position on the interlayer dielectric constant and interlayer thickness were analyzed. In the framework of this approach, we have estimated the influence of the surface oxide layer on the band structure of macroporous silicon. We observed the shift of the gaps’ edges to the higher or lower frequencies, depending on the interlayer thickness and dielectric constant. We have shown that the existence of a native oxide surface layer should be taken into consideration to understand the optical properties of 2D photonic crystals, particularly in macroporous silicon structures.  相似文献   

8.
Feigel A  Kotler Z  Sfez B 《Optics letters》2002,27(9):746-748
Holographic lithography is an ideal technique for fabricating three-dimensional photonic crystals. However, a critical stage in the fabrication is the minute alignment of the layers with one another. We present a simple moirelike alignment technique with better than 20-nm translation resolution and 45-murad rotation resolution. This technique can easily be extended to other situations when low-cost, high-precision alignment is needed.  相似文献   

9.
光子晶体制备技术和应用研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
倪培根 《物理学报》2010,59(1):340-350
从光子晶体概念的提出到现在已经过了20余年,光子晶体不仅成为微纳光子学和量子光学的重要研究领域,而且在信息光学以及其他多个学科中得到广泛应用.本文重点综述了光子晶体的制备工艺,尤其是二维光子晶体和三维光子晶体的制备工艺进展,同时也综述了光子晶体的应用研究的进展,在此基础上,提出了一些光子晶体研究的展望.  相似文献   

10.
A wavelet method is applied for the first time to the computation of band diagrams of photonic crystals (PhCs). The wavelet algorithm is described. Its numerical implementation is validated in the case of emblematic two-dimensional triangular and square lattice PhCs. Although these examples do not emphasize the full power of wavelet methods, the number of wavelets needed to achieve a prescribed accuracy is already shown to be orders of magnitude smaller than the number of waves used in the traditional plane wave method. Further extension to more complex photonic structures is discussed.  相似文献   

11.
We present measurements of the thermal emission properties of 2D and 3D silicon photonic crystals with and without substrate heated resistively as well as passively with an aluminium hotplate. The out-of-plane and in-plane emission properties were recorded and compared to numerical simulation. It turned out that for the in-plane 2D photonic crystal and out-of-plane 3D photonic crystal emission a photonic stop gap effect is visible. For the out-of-plane 2D photonic crystal emission, no photonic bandgap effect is observable but instead strong silicon oxide emission from native oxide inside the pores of silicon are observable. A model for the modified thermal emission is presented.  相似文献   

12.
李夏  薛唯  蒋玉蓉  喻志农 《光学技术》2006,32(6):871-878
光子晶体是一种介电常数不同的、其空间呈周期分布的新型光学材料。由于光子晶体具有光子带隙、光子局域和控制光子态密度等特性,所以它具有广阔的应用前景。简述了光子晶体的主要特征,重点介绍了其制备方法、进展以及实际的和潜在的应用。  相似文献   

13.
We show that photonic crystals with ring-shaped holes (RPhCs) exhibit superior properties compared to conventional photonic crystals (PhCs). At low air-fill factors RPhCs can have a larger bandgap than conventional PhCs. Moreover, RPhC waveguides with both high group index and small group velocity dispersion can be designed. RPhC waveguides are also more sensitive to external refractive index changes, which is attractive for sensor applications. Finally we set up a procedure to pattern RPhCs in silicon-on-insulator.  相似文献   

14.
Yogita Kalra  R K Sinha 《Pramana》2006,67(6):1155-1164
The polarization-dependent photonic band gaps (TM and TE polarizations) in two-dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is affected by the changing ellipticity of the constituent air holes/dielectric rods. It is observed that the size of the photonic band gap changes with changing ellipticity of the constituent air holes/dielectric rods. Further, it is reported, how the photonic band gap size is affected by the change in the orientation of the constituent elliptical air holes/dielectric rods in 2D photonic crystals.  相似文献   

15.
Happ  T.D.  Kamp  M.  Forchel  A. 《Optical and Quantum Electronics》2002,34(1-3):91-99
2D triangular photonic crystals (PCs) have been integrated as laser mirrors in electrically pumped InGaAs/AlGaAs ridge waveguide lasers. The investigated PC lattice constants range from 160 to 400 nm with light incident along both main symmetry directions M and K. The observed cw laser performance is strongly dependent on both orientation and period of the PC. This behaviour is discussed using a 2D transfer matrix calculation of the PC reflectivity. As a demonstrator device relying on the 2D light confining properties of the PC, an active beamsplitter with a bending radius of 5 m is presented. Here, the PC is successfully used as cladding material in the S-bent regions of the ridge waveguide, significantly reducing the bending loss.  相似文献   

16.
利用有限时域差分法(FDTD)进行数值模拟,在二维光子晶体中实现了电磁波两种偏振态的自准直——全光自准直(full-light-self-collimation).研究表明,通过对光子晶体的结构做适当的调整,可以在较宽频率范围内实现横电波(TE波)和横磁波(TM波)沿着相同方向传播,同时保持较强的能流强度.全光自准直可以显著提高光源利用率和光波导的传播效率,在高密度集成光路中有非常重要的用途. 关键词: 光子晶体 偏振 自准直  相似文献   

17.
We analyze the absolute photonic band gap in two dimensional (2D) square, triangular and honeycomb lattices composed of air holes or rings with different geometrical shapes and orientations in anisotropic tellurium background. Using the numerical plane wave expansion method, we engineer the absolute photonic band gap in modified lattices, achieved by addition of circular, elliptical, rectangular, square and hexagonal air hole or ring into the center of each lattice unit cell. We discuss the maximization of absolute photonic band gap width as a function of main and additional air hole or ring parameters with different shapes and orientation.  相似文献   

18.
High-temperature annealing and pre-annealing lift-off procedures are employed to improve the solutionproeessible technique for the fabrication of one- (1D) and two-dimensional (2D) metallic photonic crystals (MPCs) based on colloidal gold nanoparticles. This enables the successful fabrication of gold nanowires or nanocylinder array structures with the photoresist template removed completely, which is crucial for the application of MPCs in biosensors and optoelectronic devices. Microscopic measurements show homogeneous 1D and 2D photonic structures with an area as large as 100 mm2. Plasmonic resonance of the gold nanostructures and its coupling with the resonance mode of the planar waveguide underneath the photonic structures are observed, implying the excellent optical properties of this kind of MPCs based on the improved fabrication technique.  相似文献   

19.
A genetic algorithm (GA) is used for the design of two-dimensional photonic crystals with large stop-bands. In this procedure, the unit cell of the crystal with square lattice is assumed to be composed of a number of Si round rods. And the key point to obtain maximum absolute band-gap is using the GA to optimize the radius and center position of each rod in unit cell. In the implementations of GA, the structure of each unit cell is represented by a binary string and the fitness (the absolute band-gap) for each unit cell is calculated by the plane-wave expansion (PWE) method. As numerical examples, we present several GA designs considering different number of round rods in the unit cell as well as the band-gap under the light line. The maximum absolute bandwidth of these optimized band-gaps is 0.1466(2πc/a).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号