首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Results on diagnoses of laser-driven, shock-heated foam plasma with time-resolved Al 1s-2p absorption spectroscopy are reported. Experiments were carried out to produce a platform for the study of relativistic electron transport. In cone-guided Fast Ignition (FI), relativistic electrons generated by a high-intensity, short-pulse igniter beam must be transported through a cone tip to an imploded core. Transport of the energetic electrons could be significantly affected by the temperature-dependent resistivity of background plasmas. The experiment was conducted using four UV beams of the OMEGA EP laser at the Laboratory For Laser Energetics. One UV beam (1.2 kJ, 3.5 ns square) was used to launch a shock wave into a foam package target, consisting of 200 mg/cm3 CH foam with aluminum dopant and a solid plastic container surrounding the foam layer. The other three UV beams with the total energy of 3.2 kJ in 2.5 ns pulse duration were tightly focused onto a Sm dot target to produce a point X-ray source in the energy range of 1.4–1.6 keV. The quasi-continuous X ray signal was transmitted through the shock-heated Al-doped, foam layer and recorded with an X-ray streak camera. The measured 1s-2p Al absorption features were analyzed using an atomic physics code FLYCHK. Electron temperature of 40 eV inferred from the spectral analysis is consistent with 2-D DRACO Radiation-hydrodynamic simulations.  相似文献   

4.
5.
6.
7.
The aim of this work is to produce and study a high energy density laboratory plasma relevant to astrophysical accretion disks. To this end, an experimental setup based on a modified cylindrical wire array was devised, which employs a cusp magnetic field to introduce angular momentum into the system. The setup was studied numerically with the three-dimensional, resistive magneto-hydrodynamic code GORGON. Simulations show that a differentially-rotating flow is formed, with typical rotation velocity and Mach number values of 60 km/s and Mφ ~ 5 respectively. The plasma is radiatively cooled and presents a Reynolds number higher than 107. In addition, the magnetic Reynolds number and the plasma β are >1. Such a plasma is of interest for the study of hydrodynamic and magneto-hydrodynamic instabilities, and turbulence generation in differentially-rotating plasma flows.  相似文献   

8.
Exploratory measurements of oscillatory boundary layers were conducted over a smooth and two different rough beds spanning the laminar, transitional and turbulent flow regimes using a multi-camera 2D-PIV system in a small oscillatory-flow tunnel (Admiraal et al. in J Hydraul Res 44(4):437–450, 2006). Results show how the phase lag between bed shear stress and free-stream velocity is better defined when the integral of the momentum equation is used to estimate the bed shear stress. Observed differences in bed shear stress and phase lag between bed shear stress and free-stream velocity are highly sensitive to the definition of the bed position (y = b). The underestimation of turbulent stresses close to the wall is found to explain such differences when using the addition of Reynolds and viscous stresses to define both the bed shear stress and the phase lag. Regardless of the flow regime, in all experiments, boundary-layer thickness reached its maximum value at a phase near the flow reversal at the wall. Friction factors in smooth walls are better estimated using a theoretical equation first proposed by Batchelor (An introduction to fluid dynamics. Cambridge University Press, Cambridge, 1967) while the more recent empirical predictor of Pedocchi and Garcia (J Hydraul Res 47(4):438–444, 2009a) was found to be appropriate for estimating friction coefficients in the laminar-to-turbulent transition regime.  相似文献   

9.
An analytic study is made of the structure of a weak collisionless shock wave propagating in a magnetized plasma at right angles to the magnetic field. Dissipation is produced by an instability associated with electron cyclotron oscillations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti 1 Gaza, No. 2, pp. 187–190, March–April, 1982.I thank V. B. Baranov for suggesting the problem and constant interest in the work, and also A. V. Ershov for discussing the results.  相似文献   

10.
For the nonlinear kinetic equation describing the one-dimensional motion of a quasineutral collisionless plasma, perturbation velocities are determined and conditions of generalized hyperbolicity are formulated. Exact (in particular, periodical) solutions of the model are constructed and interpreted physically for the class of traveling waves. Differential conservation laws approximating the basic integrodifferential equation are proposed. These laws are used to perform numerical calculations of wave propagation, which show the possibility of turnover of the kinetic distribution function.  相似文献   

11.
Small perturbations of an unbounded volume of anisotropic collisionless plasma in a strong magnetic field are studied on the basis of MHD equations. It is assumed that there are present in the plasma ion heat fluxes connected with the third-order moments of the ion distribution function. The dispersion equation obtained, determining the velocity of five types of waves, is analyzed. In the space of the undisturbed plasma parameters the regions of values in which small perturbations are damped exponentially with time are found.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 153–157, March–April, 1993.  相似文献   

12.
Experimental results are presented for rotating Couette flows with and without circumferential pressure gradients between a rotating disk and a stationary fluid chamber. The spinning disk and the top of the C-shaped fluid chamber are separated by a μ-scale gap that forms the fluid chamber passage with inner and outer radii of 1.19 and 2.38 mm, respectively. Ranges of experimental conditions are presented to demonstrate the fluid dynamics of the test arrangement, and for determination of fluid viscosity, and gas slip flow accommodation coefficients. As such, the test arrangement provides means to determine such fluid and flow properties using microliter sample sizes, with relatively low magnitudes of experimental uncertainty.  相似文献   

13.
《Comptes Rendus Mecanique》2014,342(10-11):662-670
Plasma flows with high Knudsen numbers cannot be treated with classic continuum methods, as represented for example by the Navier–Stokes or the magnetohydrodynamic equations. Instead, the more fundamental Boltzmann equation has to be solved, which is done here approximately by particle based methods that also allow for thermal and chemical non-equilibrium. The Particle-In-Cell method is used to treat the collisionless Vlasov–Maxwell system, while neutral reactive flows are treated by the Direct Simulation Monte Carlo method. In this article, a combined approach is presented that allows the simulation of reactive, partially or fully ionized plasma flows. Both particle methods are briefly outlined and the coupling and parallelization strategies are described. As an example, the results of a streamer discharge simulation are presented and discussed in order to demonstrate the capabilities of the coupled method.  相似文献   

14.
Summary This paper describes a phenomenon of fast randomization of a collisionless plasma observed in the so called plasma sac of a constricted discharge. The phenomenon seems to be related to the achievement, in the constriction, of a critical Mach number, close to unity, in the drifting electron gas. A tentative interpretation and the experimental evidence of electro-acoustic waves related to the phenomenon are also presented.This work was supported in part by the U.S.A.E.C. under Contract AT(30-1)3100 and in part by a grant of the Esso Educational Foundation.  相似文献   

15.
Studies of the transient flows in high enthalpy shock tunnels   总被引:1,自引:0,他引:1  
  相似文献   

16.
W. R. Hu 《Shock Waves》1994,3(3):249-259
Typical problems of high speed flows and shock waves in astrophysical environment are reviewed in the present paper. The emphases are especially to the solar wind acceleration, the jet structure of radio galaxies and Quasars, the galactic shock waves.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

17.
18.
In this paper, the shock pattern oscillations induced by shock/shock interactions over double-wedge geometries in hypersonic flows were studied numerically by solving 2D inviscid Euler equations for a multi-species system. Laminar viscous effects were considered in some cases. Temperature-dependent thermodynamic properties were employed in the state and energy equations for consideration of the distinct change of the thermodynamic state. It was shown that the oscillation results in high-frequency fluctuations of heating and pressure loads over wedge surfaces. In a case with a relatively lower free-stream Mach number, the shock/shock interaction structure maintains a seven-shock configuration during the entire oscillation process. On the other hand, the oscillation is accompanied by a transition between a six-shock configuration (regular interaction) and a seven-shock configuration (Mach interaction) in a case with a higher free-stream Mach number. Numerical results also indicate that the critical wedge angle for the transition from a steady to an oscillation solution is higher compared to the corresponding value in earlier numerical research in which the perfect diatomic gas model was used.   相似文献   

19.
A simple convection algorithm for simulation of time-dependent supersonic and hypersonic flows of a perfect but viscous gas is described. The algorithm is based on conservation and convection of mass, momentum and energy in a grid of rectangular cells. Examples are given for starting flow in a shock tube and oblique shocks generated by a wedge at Mach numbers up to 30·4. Good comparisons are achieved with well-known perfect gas flows.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号