首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于有机-无机杂化钙钛矿材料的太阳电池具有能量转换效率高和制备工艺简单等优点,引起了学术界的高度关注.其中平面异质结结构太阳电池具有结构简单,可与其他类型电池相兼容以构筑叠层电池设计,以及可低温制备等诸多优点,成为当前的一个重要研究方向.然而,电池性能的优劣与钙钛矿薄膜质量的高低有着直接的联系.本文对钙钛矿材料的特性、一步溶液法制备薄膜的成核-生长机理、电池结构的演变等进行了概述,其中重点介绍了高质量钙钛矿薄膜溶液法制备过程的一些最新的质量控制方法;最后对钙钛矿太阳电池的发展及存在问题进行了总结和展望,为今后的研究提供参考.  相似文献   

2.
The ternary blend films have been fabricated via adding 4,4’-N,N’-dicarbazole-biphenyl(CBP,a hole transport material widely used in organic light emitting diodes) into the poly(3-hexylthiophene):[6,6]-phenyl C 61-butyric acid methyl ester(P3HT:PCBM).Despite the wide bandgap(3.1 eV) of the CBP,the solar cell utilizing the optimized P3HT:PCBM:CBP blend film showed an increase of 16% in power conversion efficiency and 25% in short-circuit current than the compared standard P3HT:PCBM blend film.This is attributed to the fact that the addition of the CBP could enhance the aggregation of the P3HT chains and thereby reduce the hole-electron recombination at the interface of P3HT and PCBM.We provide a simple,effective way to improve the performance of P3HT based bulk heterojunction solar cells.  相似文献   

3.
Silver nanospheres (Ag NSs) buffer layers were introduced via a solution casting process to enhance the light absorption in poly (3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) bulk heterojunction organic solar cells. These Ag NSs, as surface plasmons, could increase the optical electric field in the photoactive layer whilst simultaneously improving the light scattering. As a result, this buffer layer improves the light absorption of P3HT:PCBM blend and consequently improves the external quantum efficiency (EQE) of organic solar cells. In this work, different sizes of Ag NSs plasmon‐enhanced layer were investigated, with the aim of optimizing the performance of devices. UV‐vis spectrometer measurement demonstrates that the total optical absorption of P3HT:PCBM blend films in the spectral range of 350–650 nm is increased by ~4 and 6% with incorporation of the 20 and 40 nm Ag NSs, respectively. The Jsc was shown to increase by ~21 and 24% for 20 and 40 nm Ag NSs, respectively. This is due to the extra photogenerated excitons by the plasmonic resonance of Ag NSs. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Ordered bulk heterojunction organic solar cells are devices that combine the advantages of the planar bilayer and the bulk heterojunction architectures. They offer uninterrupted pathways to electrodes for effective charge collection and an extended Donor–Acceptor interface for efficient exciton dissociation. Additionally, this interface can also be a potential approach to increase photon absorption by light trapping. Light absorption and charge carrier generation of organic nanostructures are studied by means of finite-element modeling for a wide range of structuring widths, periods and heights for poly(3-hexylthiophene):1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (P3HT:PCBM) structures. Results show an increase in light absorption at certain wavelengths in the P3HT region with respect to an equivalent planar bilayer model. This increase can be attributed to two phenomena: for the smallest periods the structures behaves like an effective medium, while for periods of the order of magnitude of the incident light wavelength there is light trapping. The maximum increase in absorption was achieved for a 250 nm-width and 500 nm periodicity structure with a height of 40 nm. Exciton diffusion has also been studied to evaluate the effective amount of absorbed light contributing to photocurrent. In this case, best results correspond to the smallest sizes (1.25–12.5 nm-width) for all the considered heights, achieving an increment in the photocurrent up to more than a factor 6 if compared with that of the reference planar bilayer device. This study can be used to optimize our devices, which are achieved via nanoporous anodic alumina templates.  相似文献   

5.
Use of efficient anode cathode buffer layer (CBL) is crucial to improve the efficiency of organic photovoltaic cells. Here we show that using a double CBL, Ca/Alq3, allows improving significantly cell performances. The insertion of Ca layer facilitates electron harvesting and blocks hole collection, leading to improved charge selectivity and reduced leakage current, whereas Alq3 blocks excitons. After optimisation of this Ca/Alq3 CBL using CuPc as electron donor, it is shown that it is also efficient when SubPc is substituted to CuPc in the cells. In that case we show that the morphology of the SubPc layer, and therefore the efficiency of the cells, strongly depends on the deposition rate of the SubPc film. It is necessary to deposit slowly (0.02 nm/s) the SubPc films because at higher deposition rate (0.06 nm/s) the films are porous, which induces leakage currents and deterioration of the cell performances. The SubPc layers whose formations are kinetically driven at low deposition rates are more uniform, whereas those deposited faster exhibit high densities of pinholes.  相似文献   

6.
最近,旋涂法制备的钙钛矿/平面硅异质结高效叠层太阳电池引起人们广泛关注,主要原因是相比于绒面硅衬底制备的钙钛矿/硅叠层太阳电池,其制备工艺简单、制备成本低且效率高.对于平面a-Si:H/c-Si异质结电池, a-Si:H/c-Si界面的良好钝化是获得高转换效率的关键,进而决定了钙钛矿/硅异质结叠层太阳电池的性能.本文主要从硅片表面处理、a-Si:H钝化层和P型发射极等方面展开研究,通过对硅片表面的氢氟酸(HF)浸泡时间和氢等离子体预处理气体流量、a-Si:H钝化层沉积参数、钝化层与P型发射极(I/P)界面富氢等离子体处理的综合调控,获得了相应的优化工艺参数.对比研究了p-a-Si:H和p-nc-Si:H两种缓冲层材料对I/P界面的影响,其中高电导、宽带隙的p-nc-Si:H缓冲层既能够降低I/P界面的缺陷态,又可以增强P型发射层的暗电导率,提高了前表面场效应钝化效果.通过上述优化,制备出最佳的P-type emitter layer/aSi:H(i)/c-Si/a-Si:H(i)/N-type layer (inip)结构样品的少子寿命与implied-Voc分别达到2855μs和709 mV,表现出良好的钝化效果.应用于平面a-Si:H/c-Si异质结太阳电池,转换效率达到18.76%,其中开路电压达到681.5 mV,相对于未优化的电池提升了34.3 mV.将上述平面a-Si:H/c-Si异质结太阳电池作为底电池,对应的钙钛矿/硅异质结叠层太阳电池的开路电压达到1780 mV,转换效率达到21.24%,证明了上述工艺优化能够有效地改善叠层太阳电池中的硅异质结底电池的钝化及电池性能.  相似文献   

7.
We demonstrate the processing of a heterojunction solar cell from a purely macroporous silicon (MacPSi) absorber that is generated and separated from a monocrystalline n‐type Cz silicon wafer by means of electrochemical etching. The etching procedure results in straight pores with a diameter of (4.7 ± 0.2) µm and a distance of 8.3 µm. An intrinsic amorphous Si (a‐Si)/p+‐type a‐Si/indium tin oxide (ITO) layer stack is on the front side and an intrinsic a‐Si/n+‐type a‐Si/ITO layer stack is on the rear side. The pores are open when depositing the layers onto the 3.92 cm2‐sized cell. The conductive layers do not cause shunting through the pores. A silicon oxide layer passivates the pore walls. The energy‐conversion efficiency of the (33 ± 2) µm thick cell is 7.2%. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
《Current Applied Physics》2014,14(3):340-344
We present an analytical model for bulk heterojunction organic solar cells incorporating the physics of recombination in the transport equations. Monomolecular recombination process is considered to be the dominant mechanism and treated explicitly. The proposed analytical model shows good agreement with the experimental data as well as with the numerical simulations. The improvements over the previous models are also presented to show the importance of considering the recombination process. The model can be used to find device characteristics such as current–voltage characteristic, efficiency etc. of bulk heterojunction organic solar cells avoiding the mathematical complexities of numerical models.  相似文献   

9.
We used a variety of optoelectronic techniques such as broadband fs transient and cw photomodulation spectroscopies, electroabsorption, and short-circuit photocurrent in bulk heterojunctions organic solar cells for studying the photophysics in pi-conjugated polymer-fullerene blends with below-gap excitation. In contrast to the traditional view, we found that below-gap excitation, which is incapable of generating intrachain excitons, nevertheless efficiently generates polarons on the polymer chains and fullerene molecules. The polaron action spectrum extends deep inside the gap as a result of a charge-transfer complex state formed between the polymer chain and fullerene molecule. With appropriate design engineering the long-lived polarons might be harvested in solar cell devices.  相似文献   

10.
The work is devoted to the optimization of layer thickness in an organic photovoltaic cell. It presents the applied calculation method which is based on the optical transfer matrix 2×2 formalism. We present the influence of thickness of a PEDOT:PSS layer and of an active layer on the normalized modulus squared of optical electric fields distribution inside devices and on the distributions of exciton generation rate. We present the relationship between optimal thicknesses of the PEDOT:PSS layer and the active layer. We also present the influence of antireflection coating on distributions of optical electrical fields, as well as the distributions of exciton generation rate. Perpendicular and oblique illumination of the photovoltaic structure is discussed.  相似文献   

11.
The super chamber, a separated UHV reaction-chamber system has been developed. A conversion efficiency of 11.7% was obtained for an a-Si solar cell using a high-quality i-layer deposited by the super chamber, and a p-layer fabricated by a photo-CVD method.As a new material, amorphous superlattice-structure films were fabricated by the photo-CVD method for the first time. Superlattice structure p-layer a-Si solar cells were fabricated, and a conversion efficiency of 10.5% was obtained.For the fabrication of integrated type a-Si solar cell modules, a laser pattering method was investigated. A thermal analysis of the multilayer structure was done. It was confirmed that selective scribing for a-Si, TCO and metal film is possible by controlling the laser power density. Recently developed a-Si solar power generation systems and a-Si solar cell roofing tiles are also described.  相似文献   

12.
Solar cells with an SnO2/CuPc/BP/Ag heterojunction are investigated. When the cell was illuminated with white light (E=750 W/m2) through the SnO2, a photoelectric emf of 0.47 V was generated, the short-circuit current was 5 A/m2, and the maximum efficiency for the absorbed light η=0.66%. The barrier capacitance of the heterojunction Cb=1.3·10−3 F/m2; the width of the barrier in the CuPc and BP is W1=7 nm and W2=27 nm, respectively. The photosensitivity range is 400–800 nm. It is concluded that a heterojunction is present at the boundary of the p-CuPc (Eg=2.0 eV) and n-BP (Eg=0.8 eV). Vologod Polytechnical Institute. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 1, pp. 69–72, January, 1997.  相似文献   

13.
In an effort to develop hybrid organic solar cells with improved power conversion efficiency (PCE), devices based on poly (3-hexylthiophene) (P3HT):phenyl C61-butyric acid methyl ester (PCBM) active layer and poly (3,4-ethylenedioxythiophene) (PEDOT):poly (styrenesulfonate) (PSS) buffer layers were prepared. A systematic replacement of PCBM was achieved by introducing nanostructured TiO2 (∼15 nm particle size), dissolved separately in chlorobenzene (CB) and 1,2 –dichlorobenzene (DCB), to the (P3HT:PCBM) active layer while keeping a fixed amount for P3HT. To understand the effect of fullerene replacement with the inorganic metal oxide nanoparticles on different properties of resulting devices, a variety of techniques such as Current–Voltage (J–V) characteristics, Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Ultravoilet-Visible (UV–Vis) Spectrophotometry and External Quantum Efficiency (EQE) were employed. The addition of TiO2 nanoparticles in the active layer improved the power conversion efficiency (PCE) of P3HT:PCBM devices. The addition of TiO2 nanoparticles using CB as solvent enhanced the absorption in visible region and also introduced a red shift in the absorption spectra. A significant increase in EQE was observed for devices with TiO2 nanoparticles in the active layer. Mixing TiO2 also increased the surface roughness of the active layer where TiO2 nanoparticles were found to agglomerate as their concentration increased relative to fullerene derivative. A complete agglomeration of TiO2 was observed in the absence of PCBM.  相似文献   

14.
《Current Applied Physics》2020,20(7):899-903
An advanced approach to minimize the light loss was discussed for III-V solar cells, by controlling the roughnesses of the device surface. Adhesives with different viscosities were applied to bond the III-V solar cells with the supporting substrate before the epitaxial lift-off process. The surface roughness of the III-V solar cells with epoxy adhesive (Rrms = 15.4 nm) is one order of magnitude higher than that with acrylic adhesive (Rrms = 1.6 nm), due to the differences in viscosity, resulting from the spreadability while being hardened. This roughness has increased the reflectance in the wavelength between 650 and 900 nm, implying that this reflectance is influenced by the rear surface of the solar cell. The device performance of the double-junction solar cells (Ga0.5In0.5P- and GaAs- based) also reflects the effect of the reflectance. The solar cell with the epoxy adhesive exhibited ~2% increase of the conversion efficiency than that with the acrylic adhesive, mainly due to the increased current density. The integrated current density from the external quantum efficiency (EQE) also exhibited ~2% increase only in the bottom (GaAs-based) cell, corresponding to the higher reflectance for red and near-infrared wavelength ranges.  相似文献   

15.
The power conversion efficiency of organic solar cells based on donor–acceptor blends is governed by an interplay of polaron pair dissociation and bimolecular polaron recombination. Both processes are strongly dependent on the charge carrier mobility, the dissociation increasing with faster charge transport, with raised recombination losses at the same time. Using a macroscopic effective medium simulation, we calculate the optimum charge carrier mobility for the highest power conversion efficiency, for the first time accounting for injection barriers and a reduced Langevin‐type recombination. An enhancement of the charge carrier mobility from 10–8 m2/V s for state of the art polymer–fullerene solar cells to about 10–6 m2/V s, which yields the maximum efficiency, corresponds to an improvement of only about 20% for the given parameter set. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Nanosilver island thin films with different thickness were synthesized by vacuum vapor deposition between ITO and PEDOT:PSS for organic solar cells, forming the structure of ITO/AgNPs layer/PEDOT:PSS/P3HT:PCBM/LiF/Al. Surface morphology and UV–vis absorption spectrum were investigated by AFM and UV–vis scanning spectrophotometer. It was found that after adding the nanosilver film, the optical properties of the device were enhanced with increasing the thickness of nanosilver island films. When the thickness of nanosilver thin films is 3.0 nm, the most significant surface plasmon response and red-shift of the resonance absorption peak appeared. Meanwhile, short circuit current density of the device increased from 9.93 mA/cm2 to 12.98 mA/cm2, the fill factor increased from 49.35% to 52.79% and the power conversion efficiency increased from 3.05% to 4.01%. These results provided a theoretical guidance to optimize the design and increase the performance of solar cells.  相似文献   

17.
Effective design of a dye-sensitized solar cell (DSSC) requires a clear understanding of the reaction mechanisms of the constituent cell materials. The relationship between structural and photo-electrochemical properties of the photo-anodic materials is of the first priority for such investigations. Highly oriented aggregates of anatase phase TiO2 nanoparticles were deposited on Indium Tin oxide (ITO) glass substrates; over which N719 dyes were adsorbed through electrophoretic deposition under a strong magnetic field. The properties were evaluated by electrochemical measurements, UV–VIS spectroscopy, and electrical resistance measurements. The results showed that the absorbed photon number in the TiO2 aggregates with adsorbed dye and their resistivity showed different dependences on the orientation of the crystal plane in the TiO2 particle. The dependence of the photocurrent on the plane orientation of aggregates of dye-sensitized TiO2 nanoparticles has been determined from a combination of the electrical conductivity of TiO2 aggregate and the amount of dye adsorbed on the surface of TiO2.  相似文献   

18.
In this work, Zn O nanorod arrays grown by an electrochemical deposition method are investigated. The crucial parameters of length, diameter, and density of the nanorods are optimized over the synthesize process and nanorods growth time. Crystalline structure, morphologies, and optical properties of Zn O nanorod arrays are studied by different techniques such as x-ray diffraction, scanning electron microscope, atomic force microscope, and UV–visible transmission spectra.The Zn O nanorod arrays are employed in an inverted bulk heterojunction organic solar cell of Poly(3-hexylthiophene):[6-6] Phenyl-(6) butyric acid methyl ester to introduce more surface contact between the electron transporter layer and the active layer. Our results show that the deposition time is a very important factor to achieve the aligned and uniform Zn O nanorods with suitable surface density which is required for effective infiltration of active area into the Zn O nanorod spacing and make a maximum interfacial surface contact for electron collection, as overgrowing causes nanorods to be too dense and thick and results in high resistance and lower visible light transmittance. By optimizing the thickness of the active layer on top of Zn O nanorods, an improved efficiency of 3.17% with a high FF beyond 60% was achieved.  相似文献   

19.
《Current Applied Physics》2018,18(10):1095-1100
A cost-effective and efficient organic semiconductor pentacene was developed as a hole transport layer (HTL) material to replace classical PEDOT:PSS for planar perovskite solar cells (PSCs). As expected, the pentacene based device exhibits power conversion efficiency (PCE) of 15.90% (Jsc of 19.44 mA/cm2, Voc of 1.07 V, and FF of 77%), comparable to the PEDOT:PSS based device (PCE of 15.65%, Jsc of 18.78 mA/cm2, Voc of 1.07 V, and FF of 77%) under the same experimental conditions. The excellent performance of vacuum deposited pentacene is mainly attributed to the high efficient charge extraction and transfer in device due to the high-quality perovskite film grown on the top of pentacene substrate and a favorable energy-level alignment together with a desired downward band bending formed at the perovskite/pentacene interface. Our research has confirmed that pentacene could be served as a promising HTL material to achieve effective and potentially economical planar type PSCs.  相似文献   

20.
For the first time we present a free energy loss analysis (FELA) of heterojunction silicon solar cells (HSSC) to study the influence of the intrinsic buffer layer thickness (tbuffer) on the solar cell efficiency (η). The main advantage of the FELA is that the impact of various loss mechanisms can be directly expressed in absolute percentage of η. Furthermore, it is possible to extract the magnitude of every loss for each region of the solar cell. All quantities required to perform the FELA are obtained by the simulation software AFORS‐HET. The FELA yields an optimum efficiency of 21.24% for tbuffer ≈ 5 nm. The efficiency drop for tbuffer £ 5 nm is ascribed to a lower maximum usable generated power ΦG(22.84% @ 2 nm, 23.98% @ 5 nm). Lower efficiencies for tbuffer ³ 5 nm are attributed to the increased transport loss of holes in the intrinsic buffer layer (0.05% @ 2 nm, 0.65% 8 nm). The η values yielded by the FELA are in agreement with the ones calculated by AFORS‐HET, demonstrating the applicability of the FELA to the HSSC concept. Therewith, we demonstrate that the FELA can be employed to obtain a deeper understanding of the HSSC concept. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号