首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New hollow ring defect structure is introduced in photonic crystal fiber design for ultra- flat zero dispersion with very low waveguide losses. The hollow ring defect consisted of a central hole surrounded by a doped silica ring provides highly flexible defect engineering capabilities in photonic crystal fibers to achieve precise control of dispersion value and dispersion slope while independently maintaining low waveguide losses, which was not attainable in previous designs. A nearly flat zero dispersion of D=0±0.51 ps/nm km was obtained in the wavelength range of 1.44–1.61 μm with the maximum slope of ?2.7×10?2 ps/nm2 km. The confinement loss was less than 5.75×10?8 dB/m along with the bending loss of 2.8×10?6 dB/m for the radius of 10 mm, and splice loss of less than 1.57 dB to conventional single mode fiber at 1.55 μm.  相似文献   

2.
A twin bow-tie polymer-based photonic quasi-crystal fiber with high birefringence, high nonlinearity and low dispersion as well as maintaining single mode operation is presented in the wavelength range 1.8–2.2 μm. Through optimizing fiber structure parameter using a full-vector finite-element method combined with perfectly matched layers boundary condition, the birefringence is as high as 2.43 × 10−3, the nonlinearity is as high as 118 W−1 km−1, and the dispersion is only 25 ps/nm/km at 2 μm with the holes pitch of 3.3 μm. From the point of fabrication, the influences of deviation of each air hole diameter are discussed to verify the robustness of the photonic quasi-crystal fiber designed.  相似文献   

3.
We report a full modal characterization of the stimulated Brillouin scattering (SBS) properties in small core As2Se3-based chalcogenide photonic crystal fibers (PCFs). Our results include the calculation of Brillouin gain spectrum (BGS), Brillouin gain coefficient (gB), Brillouin frequency shift (BFS) by taking into account the contribution of the higher-order acoustic modes. We show that for a highly nonlinear PCF having a 2-μm hole-to-hole pitch and a 0.5-μm hole diameter, a Brillouin gain coefficient gB = 5.91 10? 9 m.W? 1 is obtained around the acoustic frequency of 8.19 GHz, which is more than 340 times larger than that of the same PCF made with silica glass. We demonstrate that the BGS of small core PCF structures show strong SBS and multipeaked behavior, with a presence of a second peak, when decreasing the core diameter which is to be attributed to the higher-order acoustic modes. We designed small core PCFs with tailored Brillouin response for a wide range of applications.  相似文献   

4.
A wavelength conversion based on high nonlinear microstructured fiber is demonstrated. Core diameter and pitch of the microstructured fiber used in this wavelength conversion method are 2.05 μm and 5.0 μm, respectively. Diameter of the air-holes in the fiber cladding is 4.50 μm, the nonlinear coefficient of the microstructured fiber is 112.2 W?1 km?1 and it is 60 times higher than that of a conventional dispersion-shift fiber, the length of the fiber is 100 m. Four-wave-mixing effect is improved in the high nonlinear microstructure fiber and then the efficiency of the wavelength conversion is improved also. 10 Gbps Not-Return-to-Zero (NRZ) modulation format and 10 Gbps Return-to-Zero (RZ) modulation format are converted effectively by our method. This study can provide a new alternative solution for high effective all-light wavelength conversion in high speed optical communication systems with multi-wavelengths and all-light optical networks.  相似文献   

5.
Halime Demir  Sedat Ozsoy 《Optik》2012,123(8):739-743
In this study, large-solid-core photonic crystal fibers with fixed air-hole diameter d = 0.84 μm and with fixed pitch length Λ = 4.2 μm are investigated for different d/Λ ratios. The dispersions and the effective mode-areas are obtained and compared for both the structures. It is seen that the dispersion management is easier by using the fixed d structures, but for working around the same zero dispersion points in a large interval of d/Λ the fixed Λ structures are more available. The Aeff values larger than 100 μm2 are obtained with d/Λ smaller than 0.2 for both the two structures. Aeff increases rapidly with decreasing d/Λ to 0.1 and then reaches to Aeff value of 500 μm2 at the d/Λ = 0.1 for the fixed d structures. The single-mode regime for the two structures is also discussed.  相似文献   

6.
In this paper, we present the study of dispersion and transmittance characteristics of one dimensional magnetic photonic crystal composed by single negative indexed materials. For this structure, we have considered magnetic negative (MNG) with ? = 1 and μ < 0 and electric negative (ENG) with ? < 0 and μ = 4. We used simple transfer matrix method and Bloch's theorem for its analytical explanations. Analyzing transmittance characteristics of the proposed structure, we obtain the tunneling of certain frequency range where as the dispersion characteristic shows total forbidden for the same range for TM mode. The tunable property is found inside the band structure due to zero-?, zero-μ and magnetic behavior of the material. To identify zero-? and zero-μ of the structure, we have calculated the dispersion and the transmittance of the magnetic structure of MNG–ENG on different angles of incidence and thickness of layers.  相似文献   

7.
We report two approaches using Quantum Well Infrared Photodetectors for detection in the [3–4.2 μm] atmospheric window. Taking advantage of the large band gap discontinuity we demonstrated a strained AlInAs/InGaAs heterostructure on InP. The optical coupling in this structure has been experimentally and numerically investigated. The results show that the coupling is mainly due to guided modes. The second approach is based on double barrier strained AlGaAs/AlAs/GaAs/InGaAs active layers on GaAs. The segregation of the elements III in these structures has been investigated using a transmission electron microscope. The results show a strong modification of the conduction band profile. We demonstrate peak wavelengths at 3.9 μm for the InP based detector and 4.0 μm for the GaAs based detector. We report a background limited peak detectivity (2π field of view, 300 K background) at 4.0 μm of about 2 × 1011 cm Hz1/2 W?1 at 77 K, and 1.5 × 1011 cm Hz1/2 W?1 at 100 K.  相似文献   

8.
High-quality Bi2Te3 microcrystals have been grown by physical vapor transport (PVT) method without using a foreign transport agent. The microcrystals grown under optimal temperature gradient are well facetted and they have dimensions up to ~100 μm. The phase composition of grown crystals has been identified by X-ray single crystal structure analysis in space group R3?m, a=4.3896(2) Å, b=30.5019(10) Å, Z=3 (R=0.0271). Raman microspectrometry has been used to describe the vibration parameters of Bi2Te3 microcrystals. The FWHM parameters obtained for representative Raman lines at 61 cm?1 and 101 cm?1 are as low as 3.5 cm?1 and 4.5 cm?1, respectively.  相似文献   

9.
《Optik》2013,124(16):2373-2375
We demonstrate a new device concept for wavelength division demultiplexing based on planar photonic crystal waveguides. The filtering of wavelength channels is realized by shifting the cutoff frequency of the fundamental photonic bandgap mode in consecutive sections of the waveguide. The shift is realized by modifying the size of the border holes.The proposed demultiplexer has an area equal to (16.5 μm × 6.5 μm) and thus it is verified that this structure is very small and can be integrated easily into optical integrated circuits with nanophotonic technologies. The output wavelengths of designed structure can be tuned for communication applications, around 1550 nm. The wavelengths of demultiplexer channels are λ1 = 1.590 μm, λ2 = 1.566 μm, λ3 = 1.525 μm, λ4 = 1.510 μm, λ5 = 1.484 μm, λ6 = 1.450 μm, λ7 = 1.400 μm respectively. Designs offering improvement of number of the separate wavelengths (seven), miniaturization of the structure (107.25 μm2) is our aim in this work.In our structure, we consider that the 2D triangular lattice photonic crystal is composed of air holes surrounded by dielectric. Its parameters are: radius of holes (r = 0.130 μm), lattice constant (a = 0.380 μm), and index of membrane (n = 3.181:InP). The numerical model used to simulate the structure of the demultiplexer is based on the finite difference time domain (FDTD).  相似文献   

10.
We report the significant enhancement of the power factor of Ca3Co4O9+δ through Yb doping. The pellets were prepared by pressing under 0.5 GPa and 2 GPa. The highest power factor of 553 μW m?1 K?2 due to the significant increase of electrical conductivity was obtained for Ca2.9Yb0.1Co4O9+δ pressed at 0.5 GPa. This is 2.3 times higher than that of Ca3Co4O9+δ (246 μW m?1 K?2). Nanostructure examinations show that the pellets pressed at 0.5 and 2 GPa have different nano-lamella structures. This work suggests that Yb is an effective doping element for enhancing the electrical transport properties of Ca3Co4O9+δ, and the optimum doping level is related to the nanostructure of the bulk pellets.  相似文献   

11.
The Zn/Er/Yb:LiNbO3 and Er/Yb:LiNbO3 crystals were grown by the Czochralski technique. The laser characteristics of 1.54 μm emission were predicted based on the Judd–Ofelt theory, and the intensity parameters Ωt (Ω2=7.23×10?20 cm2, Ω4=3.15×10?20 cm2 and Ω6=1.43×10?20 cm2) were obtained. The stimulated emission cross sections (σem) at 1.54 μm emission in Zn/Er/Yb:LiNbO3 were calculated based on the McCumber theory and the Füchtbauer–Ladenburg theory. The gain cross section spectrum of Zn/Er/Yb:LiNbO3 crystal was also investigated. Under 980 nm excitation, a lenghthening lifetime of 1.54 μm emission and an enhancement of green upconversion emission were observed for Zn/Er/Yb:LiNbO3 crystal. The studies on the power pump dependence and the upconversion mechanism suggested that both green and red upconversion emissions were populated via the three-photon process, and Zn2+ ion tridoping increases the probability of cross relaxation process between the two neighboring Er3+ ions.  相似文献   

12.
Herein, we report the sonochemical reactions with MSU-X mesoporous alumina (m-Al2O3) in aqueous solutions. Sonication (f = 20 kHz, I = 30 W cm?2, Waq = 0.67 W mL?1, T = 36–38 °C, Ar) causes significant acceleration of m-Al2O3 dissolution in the pH range of 4–11. Moreover, power ultrasound has a dramatic effect on the textural properties and phase composition of m-Al2O3. Short-time sonication at pH = 4 leads to the formation of nanorods and nanofibers of boehmite, AlO(OH). Prolonged ultrasonic treatment causes high aspect morphology transformation to aggregated nanosheets in weakly acid solutions or plated nanocrystals in alkaline solutions. Sonochemical products in alkaline medium are composed principally from boehmite and small amounts of bayerite, Al(OH)3. Silent hydrolysis of m-Al2O3 yields boehmite at pH = 4 and bayerite at pH = 11. The effect of ultrasound on the textural properties of mesoporous alumina as well as on the transformation of nanosized bayerite to boehmite can be consistently attributed to the transient strong heating of the liquid shell surrounding the cavitation bubble which caused the chemical processes similar to those occurred during hydrothermal treatment.  相似文献   

13.
In this study, the synthesis of Ce0.8Sm0.2O1.9 (SDC) solid electrolyte by the ultrasound assisted co-precipitation method was accomplished to explore the effects of ultrasound power, ultrasound pulse ratio and probe type upon the ionic conductivity of SDC as well as the lattice parameter, the microstructure and the density. Fine powders of uniform crystallite sizes (average 11.70 ± 0.62 nm) were obtained, needing lower sintering temperature. The SDC powders were successfully sintered to a relative density of over 95% at 1200 °C (5 °C min?1) for 6 h. The micrograph of SDC pellets showed non-agglomerated and well-developed grains with average size of about 200 nm. X-ray diffraction analysis showed that the lattice parameter increased with increasing acoustic intensity and reached a maximum for the 14.94 W cm?2. Further, a linear relationship was detected between the lattice parameter and the ionic conductivity, inspiring a dopant like effect of US on the electrolyte properties. The highest ionic conductivity as σ800°C = 3.07 × 10?2 S cm?1 with an activation energy Ea = 0.871 kJ mol?1 was obtained with pulsed ultrasound for an acoustic intensity of 14.94 W cm?2, using 19 mm probe and 8:2 pulse ratio.  相似文献   

14.
Fourier transform spectra of oxirane (ethylene oxide, c-C2H4O) have been recorded in the 730–1560 cm?1 (6.4–13.7 μm) spectral region using a Bruker IFS125HR spectrometer at a resolution of 0.0019 cm?1. A total of six vibration bands, ν15, ν12, ν5, ν3, ν10 and ν2, have been observed and analyzed. The corresponding upper state ro-vibrational levels were fit using Hamiltonian matrices accounting for various interactions. Satisfactory fits were obtained using the following polyads {151, 121, 51} and {101, 21} of interacting states. As a result, an accurate and extended set of Hamiltonian constants were obtained. The following band centers were derived: ν0 (ν15) = 808.13518(60) cm?1, ν0 (ν12) = 822.27955(37) cm?1, ν0 (ν5) = 876.72592(15), ν0 (ν3) = 1270.37032(10) cm?1, ν0 (ν10) = 1471.35580(50) cm?1 and ν0 (ν2) = 1497.83309(15) cm?1 where the uncertainties are one standard deviation.  相似文献   

15.
《Radiation measurements》2009,44(3):295-299
Contrary to the normally observed increase in groundwater radon that occurs prior to earthquakes, we have measured anomalous decreases in radon concentration prior to the 2003 MW = 6.8 Chengkung and 2006 MW = 6.1 Taitung earthquakes that occurred within a 55 km radius from the Antung D1 monitoring well in eastern Taiwan. The v-shaped pattern of radon anomalies recognized at Antung is valuable for detecting the aseismic strain precursory to potentially disastrous earthquakes in a fractured aquifer surrounded by ductile aquitard in seismotectonic environments in this area.  相似文献   

16.
InP-based InGaAsP photodetectors targeting on 1.06 μm wavelength detection have been grown by gas source molecular beam epitaxy and demonstrated. For the detector with 200 μm mesa diameter, the dark current at 10 mV reverse bias and R0A are 8.89 pA (2.2 × 10−8 A/cm2) and 3.9 × 105 Ω cm2 at room temperature. The responsivity and detectivity of the InGaAsP detector are 0.30 A/W and 1.45 × 1012 cm Hz1/2 W−1 at 1.06 μm wavelength. Comparing to the reference In0.53Ga0.47As detector, the dark current of this InGaAsP detector is about 570 times lower and the detectivity is more than ten times higher, which agrees well with the theoretical estimation.  相似文献   

17.
Ferrimagnetism has been extensively studied in garnets, whereas it is rare to find the antiferromagnet. Present work will demonstrate antiferromagnetism in the two Mn–V-garnets. Antiferromagnetic phase transition in AgCa2Mn2V3O12 and NaPb2Mn2V3O12 has been found, where the magnetic Mn2+ ions locate only on octahedral A site. The heat capacity shows sharp peak due to antiferromagnetic order with the Néel temperature TN=23.8 K for AgCa2Mn2V3O12 and TN=14.2 K for NaPb2Mn2V3O12. The magnetic entropy change over a temperature range 0–50 K is 13.9 J K?1 mol-Mn2+-ions?1 for AgCa2Mn2V3O12 and 13.6 J K?1 mol-Mn2+-ions?1 for NaPb2Mn2V3O12, which are in good agreement with calculated value of Mn2+ ion with spin S=5/2. The magnetic susceptibility shows the Curie–Weiss behavior over the range 29–350 K. The effective magnetic moment μeff and the Weiss constant θ are μeff=6.20 μB Mn2+-ion?1 and θ=?34.1 K (antiferromagnetic sign) for AgCa2Mn2V3O12 and μeff=6.02 μB Mn2+-ion?1 and θ=?20.8 K for NaPb2Mn2V3O12.  相似文献   

18.
R.S. Kaler 《Optik》2012,123(18):1654-1658
In this paper, the 16 channel WDM systems at 10 Gb/s have been investigated for the various optical amplifiers and hybrid optical amplifiers and the performance has been compared on the basis of transmission distance and dispersion. The amplifiers EDFA and SOA have been investigated independently and further compared with hybrid optical amplifiers like RAMAN-EDFA and RAMAN-SOA. It is observed that hybrid optical amplifier RAMAN-EDFA provides the highest output power (12.017 and 12.088 dBm) and least bit error rate (10?40 and 9.08 × 10?18) at 100 km for dispersion 2 ps/nm/km and 4 ps/nm/km respectively.  相似文献   

19.
We report on effective sulfur-based passivation treatments of type-II InAs/GaSb strained layer superlattice detectors (100% cut-off wavelength is 9.8 μm at 77 K). The electrical behavior of detectors passivated by electrochemical sulfur deposition (ECP) and thioacetamide (TAM) was evaluated for devices of various sizes. ECP passivated detectors with a perimeter-to-area ratio of 1600 cm?1 exhibited superior performance with surface resistivity in excess of 104 Ω cm, dark current density of 2.7 × 10?3 A/cm2, and specific detectivity improved by a factor of 5 compared to unpassivated devices (VBias =  ? 0.1 V, 77 K).  相似文献   

20.
Emission spectra of SrH and SrD have been studied at high resolution using a Fourier transform spectrometer. The molecules have been produced in a high temperature furnace from the reaction of strontium metal vapor with H2/D2 in the presence of a slow flow of Ar gas. The spectra observed in the 18 000–19 500 cm?1 region consist of the 0–0 and 1–1 bands of the E2Π–X2Σ+ transition of the two isotopologues. A rotational analysis of these bands has been obtained by combining the present measurements with previously available pure rotation and vibration–rotation measurements for the ground state, and improved spectroscopic constants have been obtained for the E2Π state. The present analysis provides spectroscopic constants for the E2Π state as ΔG(½) = 1166.1011(15) cm?1, Be = 3.805503(32) cm?1, αe = 0.098880(47) cm?1, re = 2.1083727(89) Å for SrH, and ΔG(½) = 839.1283(23) cm?1, Be = 1.918564(15) cm?1, αe = 0.034719(23) cm?1, re = 2.1121943(83) Å for SrD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号